
UNITA - Ultrasonic Network for IoT

Applications

Smart Ultrasonic Beacons for the Communication of IoT Devices

Diploma Thesis

For attainment of the academic degree of

Dipl.-ing.für technisch-wissenschaftliche Berufe

in the Masters Course Digital Media Technology at St. Pölten

University of Applied Sciences, specialized area Mobiles Internet

Submitted by:

Florian Taurer, BSc
dm171557

Advisor and First Assessor: FH-Prof. Dipl.-Ing. Mag. Dr. Matthias Zeppelzauer

Second Assessor: Alexis Ringot, master

Zeillern, 15.01.2020

Declaration

- The attached research paper is my own, original work undertaken in partial fulfillment of

my degree.

- I have made no use of sources, materials or assistance other than those which habe

been openly and fully acknowledged in the text. If any part of another person’s work has

been quoted, this either appears in inverted commas or (if beyond a few lines) is indented.

- Any direct quotation or source of ideas has been identified in the text by author, date,

and page number(s) immediately after such an item, and full details are provided in a

reference list at the end of the text.

- I understand that any breach of the fair practice regulations may result in a mark of zero

for this research paper and that it could also involve other repercussions.

Date: Signature:

I

Acknowledgement

I would first like to thank my thesis advisor FH-Prof. Dipl.-Ing. Mag. Dr. Matthias Zep-

pelzauer of the Institute of Creative\Media/Technologies at University of Applied Sciences

St. Pölten. The door to Prof. Zeppelzauer’s office was always open whenever I ran into

a trouble spot or had a question about my research or writing. He consistently allowed

this paper to be my own work, but steered me in the right direction whenever he thought I

needed it.

I would also like to acknowledge Alexis Ringot master at the University of Applied Sci-

ences St. Pölten of the Institute of Creative\Media/Technologies as the second reader of

this thesis, and I am gratefully indebted to his very valuable comments on this thesis.

Further, I would like to thank Netidee for supporting me with a scholarship, which helped

me a lot to finance the hardware of my master thesis.

I would also like to thank the experts who were involved in the hardware research, as-

semble and tests for this research project, as well as the experts who were involved in

the user study design: Armin Kirchknopf BA MA BSc, Dipl.-Ing. Christoph Braun BSc, Dr.

Victor Adriel de Jesus Oliveira MSc and Dipl.-Ing. Stefanie Größbacher BSc. Without their

passionate participation and input, the validation survey could not have been successfully

conducted.

Finally, I must express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study and through

the process of researching and writing this thesis. This accomplishment would not have

been possible without them. Thank you.

II

Abstract

Internet of Things (IoT) got an important field of research and development in the last years.

IoT devices often use Bluetooth or Wi-Fi for communicating with the Internet or other de-

vices. In recent years, ultrasound has become a new additional way of communicating

with devices. Currently, there are no open source solutions for building beacons using

ultrasound as an alternative communication channel. The master thesis UNITA provides

a hardware and software solution for building devices and a whole infrastructure using ul-

trasonic communication. UNITA includes the creation of the hardware with a construction

manual for the ultrasonic communication device, called UNITA beacon. Further, a SDK

and a server basis for creating applications on those beacons got implemented. UNITA

beacons represent a novel communication endpoint for many use cases. One of those use

cases is the ultrasonic blackboard SocialWall, which was developed with the UNITA SDK

as a proof-of-concept application. Additionally, the evaluation of SocialWall was part of the

thesis. The result of UNITA was a hardware concept with a first prototype. On the software

side, a SDK was created and published, as well as server basis. In addition, user studies

were fulfilled. They showed that ultrasound is an interesting and innovative way of commu-

nicating with devices, which is well accepted and also trusted by the users, though security

still plays an important role for them. UNITA is open source and can be further developed

by anybody, as well as used for developing application like SocialWall.Further, UNITA could

be an important new area for the industry and developed more into that direction.

III

Kurzfassung

Internet of Things (IoT) wurde über die letzten Jahre hinweg zu einem wichtigen Feld für

Forschung und Entwicklung. IoT Geräte nutzen of Wi-Fi oder Bluetooth zur Kommunika-

tion mit dem Internet oder anderen Geräten. In den letzten Jahren entwickelte sich Ultra-

schall zu einem neuen zusätzlichen Weg mit anderen Geräten zu kommunizieren. Mo-

mentan gibt es keine Open Source Hardware- und Software-Lösungen für das Erstellen

von eigenen Beacons, die Ultraschall als alternativen Kommunikationskanal nutzen. Die

Diplomarbeit UNITA stellt nun eine Lösung für sowohl Hardware, wie auch Software, zur

Verfügung. Diese Lösung soll es möglich machen, eigene Geräte und die Infrastruktur für

Ultraschallkommunikation zu bauen. UNITA umfasst die Erstellung der Hardware mit einer

Bauanleitung für die Ultraschallkommunikationsgeräte, genannt UNITA Beacon. Weiters,

wurde ein SDK wie auch ein Server entwickelt, um eigene für die Beacons zu program-

mieren. UNITA Beacons stellen einen neuartigen Kommunikationsendpunkt für viele Bere-

iche dar. Einer dieser Einsatzbereiche ist eine Art Schwarzes Brett mit Ultraschall mit

dem Namen "SocialWall", welches als Machbarkeitsstudie umgesetzt wurde. Zusätzlich

war die Evaluierung von SocialWall Teil der Diplomarbeit. Das Ergebenis von UNITA sind

ein Hardwarekonzept für Ultraschallbeacons, wie auch ein Prototyp eines Beacons. Weit-

ers, wurde ein SDK implementiert und zusätzlich ein Server erstellt. Die Evaluierung mit

Nutzern zeigte, dass Ultraschall einen interessanten und innovativen Weg der Kommunika-

tion darstellt. Diese Kommunikationsmethode wurde bei den Nutzern gut angenommen

und weiters hat sich auch gezeigt, dass sie Ultraschall Vertrauen. Trotzdem ist die Sicher-

heit der Nutzerdaten ein wichtiger Anknüfungspunkt für weitere Schritte. UNITA ist Open

Source Software und kann von jedem weiterentwickelt werden, wie auch von jedem für die

Entwicklung von neuen Applikation verwendet werden. UNITA stellt auch einen wichtigen

und interessanten Bereich für die Industrie dar.

IV

Contents

1 Introduction 1

2 Background, Theory and Related Works 3

2.1 Ultrasound . 3

2.1.1 Modulation . 3

2.1.1.1 Amplitude Shift Keying (ASK) 4

2.1.1.2 Frequency Shift Keying (FSK) 4

2.1.1.3 Phase Shift Keying (PSK) 4

2.1.1.4 Enhanced and combined modulation techniques 4

2.1.2 Acoustic Networks . 5

2.1.3 Frameworks and Protocols for Ultrasonic Communication 7

2.1.3.1 Open Protocols: The SoniTalk SDK 7

2.1.3.2 Proprietary Frameworks and Protocols 7

2.1.4 Ultrasonic Applications . 8

2.1.4.1 Context-Awareness . 8

2.1.4.2 Indoor Localization . 9

2.1.4.3 Ultrasonic Communication 11

2.1.4.4 Internet of Things and Wearables 13

2.1.5 Security Aspects of Ultrasonic Communication 14

2.2 Related Communication Technologies . 17

2.2.1 BLE - Bluetooth Low Energy . 17

2.2.2 Wi-Fi . 18

2.2.3 NFC - Near Field Communication 18

2.2.4 LoRaWAN . 19

2.2.5 5G . 20

2.3 Alternative Communication Protocols to the Thesis 21

2.3.1 MQTT . 21

2.3.2 CoAP . 21

2.3.3 AMQP . 21

2.4 OSI-Model . 22

3 UNITA - An Ultrasonic Beacon 24

3.1 General Requirements of UNITA . 24

3.2 Environment and Architecture of UNITA . 24

V

3.3 Hardware Implementation . 25

3.3.1 Requirements . 25

3.3.2 Challenges . 26

3.3.3 Hardware Selection . 27

3.3.4 Problems . 30

3.3.5 Results of Hardware Selection . 30

3.3.6 Hardware Setup of the UNITA Beacon 30

3.4 Software Implementation . 33

3.4.1 Operating System . 33

3.4.2 UNITA SDK - Client-side . 34

3.4.2.1 Requirements . 34

3.4.2.2 Software Architecture . 34

3.4.2.3 SoniTalk Extension for Longer Messages 36

3.4.3 Used Protocols . 37

3.4.3.1 WebSockets . 37

3.4.3.2 REST . 37

3.4.3.3 Functionality . 38

3.4.3.4 Classification in the OSI-Model 39

3.4.3.5 Challenges and Remarks 40

3.4.4 UNITA Server - Server-side . 40

3.4.4.1 Requirements . 40

3.4.4.2 Structure . 41

3.4.4.3 Database . 42

3.4.4.4 Functionality . 44

3.4.4.5 Map . 46

3.4.4.6 Challenges and Remarks 47

4 Proof-Of-Concept App "SocialWall" 48

4.1 Use Case Definition . 48

4.2 Main Use Case - SocialWall . 50

4.3 Implementation . 51

4.3.1 Implementation Beacon . 51

4.3.2 Implementation Client . 54

5 Evaluation 58

5.1 User Study . 58

5.1.1 Aims of the User Study . 58

5.1.2 Target Group . 58

5.1.3 Study Design . 58

5.1.4 Research Questions . 59

5.1.5 Task Description . 59

5.2 User Study Results . 60

5.2.1 Demographics . 60

5.2.2 Ultrasonic Communication . 61

5.2.3 Usability of SocialWall . 62

6 Discussion and Future Work 64

6.1 UNITA Beacon and Ultrasound Communication 64

6.2 UNITA SDK and Server . 64

6.3 User Study Interpretation: SocialWall . 65

6.4 User Study Interpretation: Ultrasonic Communication 65

6.5 Future Topics and possible Extensions . 66

7 Conclusion 68

Appendices 79

A Class Diagrams - UNITA SDK . 79

B Source Code Snippets . 82

C Questionnaires . 102

1 Introduction

The area of Internet of Things (IoT) gained increasing importance in recent years. More

and more everyday devices become smart and connected. Most of today’s IoT devices

communicate via Wireless LAN or Bluetooth, which do not provide a seamless experience.

This thesis focuses on the development and construction of an Ultrasonic Network for

IoT Applications (UNITA). That is, an SDK for developing applications and a construction

manual for ultrasonic beacons. With these beacons, it is possible to create a network which

can be used to seamlessly connect smartphones, smartwatches and other IoT devices with

each other and the Internet.

Ultrasonic beacons represent a novel communication endpoint for the Internet and would

especially enable low-threshold devices (as often used in IoT) to connect to the Internet.

Communication via sound is thereby very convenient as, in contrast to Bluetooth, no device

pairing is required and, in contrast to radio-based NFC, no expensive sensors are needed.

This infrastructure provides an alternative way of communicating for IoT devices, e.g. to

seamlessly send and receive data over sound, pair devices automatically and connect

with the Internet for data exchange. Possible applications include location-based services,

mobile payments, secure authentication, home automation, and device synchronization.

In general, ultrasonic communication can be considered a novel additional communica-

tion channel to existing ones like Wi-Fi, Bluetooth and NFC which is cheap and easy to

use. In future, a combination of different channels could increase the quality of various

services, such as the accuracy of location tracking (Legendre, 2015) for navigation and the

improved security of adding sound as an additional channel for multi-factor authentication.

Currently, there are no open source SDKs for implementing IoT applications using ultra-

sonic communication, as well as no open source beacon specialized on ultrasonic com-

munication. The master thesis should answer the question of how an ultrasonic beacon

could be developed with simple hardware, how well such a beacon works and to which

degree users accept and trust the beacon and its communication. Further, the overall goal

of UNITA is to build a first open hardware ultrasonic beacon to send and receive data via

inaudible signals and to create an open source software basis using ultrasonic communi-

cation for developers.

This thesis addresses the following major goals for the realization of a first open source

ultrasonic beacon:

• Easily reproducible hardware should be used.

• The costs and energy consumption should be kept at a minimum.

1

1 Introduction

• Building ad-hoc ultrasound networks, should be possible.

• The implementation of a software infrastructure (server and SDK) to enable informa-

tion sharing should be achieved.

• The correct operability of a proof-of-concept mobile and a ultrasonic beacon applica-

tion should be validated.

• The acceptance and trustfulness of ultrasonic communication via a user study should

be evaluated.

The development process behind the work in this thesis was follows:

• Literature and hardware research, leading to a set of suitable components

• Creation of sketches of the SDK

• Interface to the open source ultrasonic communication protocol SoniTalk

• Design and Elaboration of Use cases

• Finish of a first version of the SDK

• Implementation and testing of one use case as a proof-of-concept application

• Hardware tests, evaluation, improvement and retests

• Realization and evaluation via a user study

Through working on the open source project SoniTalk, much prior knowledge about ul-

trasonic communication could be gathered. The goal in SoniTalk was the development of

a protocol for data-over-sound and a proof-of-concept demo application. UNITA uses this

protocol as a base for sending and receiving ultrasonic signals.

The thesis is structured as follows. Chapter 2 gives an overview of ultrasound, existing

technologies, and related projects. It begins with a brief overview of ultrasound charac-

teristics, its modulation forms and usage as a network information carrier. Next, several

available frameworks and ultrasonic applications in different areas are proposed, leading

to and highlighting security aspects of ultrasonic communication. Further, a brief overview

of other communication technologies as well as the OSI-model is described. Chapter 3 be-

gins with a general overview and then focuses on the hardware implementation process,

as well as the software development. Each part gives information about the requirements,

challenges, problems, the process itself and results of the UNITA component. Furthermore,

the general areas of use and the other use cases created for developing the SDK are de-

scribed in chapter 4. This leads to the implementation of the proof-of-concept demonstrator

application "SocialWall", further described in chapter 4. The evaluation of the software, as

well as the hardware, becomes the main topic of chapter 5, which further leads to a dis-

cussion about the whole UNITA project results, including possible extensions in chapter 6,

and ending with the conclusion in chapter 7.

2

2 Background, Theory and Related Works

2.1 Ultrasound

Smartphones are able to listen to (almost) inaudible sounds. Most microphones and loud-

speakers are capable to receive and send ultrasound up to 20kHz, whereas humans per-

ceive sound only up to 18kHz (Wang et al., 2016). Most humans over 18 years already

cannot hear frequencies above 17Khz (Deshotels, 2014). Different speakers have different

levels of frequency selectivity. Therefore, some speakers are more suitable for specific

frequencies than others. The same is true for the microphones, which are rather simple

because of the form factor of smartphones. In general, speakers and microphones show

reduced sensitivity at higher frequencies (Wang et al., 2016).

By analyzing different sounds, it shows that the characteristics of time and frequency

depend on the type of audio. Therefore, these characteristics play an important role when

decoding embedded ultrasonic information. Connected with that, the ambient noise can

cause significant interferences. Wang et al. (2016) measured different environments and

found out that most ambient noise frequencies are lower than 2kHz. Their conclusion of

testing ambient noise was to use frequencies higher than 8kHz, as ambient noise higher

than 8khz is weaker and does not have a strong impact anymore.

Sound usually contains wide spectrum of frequencies and can be formally characterized

as a sum of waves of those frequencies. Arp et al. (2017) classified and described the spec-

trum into three frequency bands: infrasound, audible sound and ultrasound. Infrasound is

difficult to produce on small devices, because of a relatively long wavelength. Humans can

normally not hear this frequency range. Depending on the persons’ age, audible sound

between 20Hz and 20kHz can be recognized. The upper bound gets lower the older the

receiving person gets. Due to a small wavelength, ultrasound with frequencies higher than

20kHz can be emitted from small devices and are a good base for transmission. Those

frequencies are inaudible for humans. Commodity hardware is normally designed for a

frequency band of 20Hz to 20kHz, which leaves a range of 18kHz to 20kHz for inaudible

data transmission, also called near-ultrasonic frequency range.

2.1.1 Modulation

The following section shows different kinds of modulation schemes, which are needed to

transport information via a carrier medium. Starting with the most common digital mod-

ulation schemes, which are amplitude-shift keying (ASK), phase-shift keying (PSK) and

3

2 Background, Theory and Related Works

frequency shift keying (FSK) (Schiller, 2001). Further, enhanced and combined modula-

tion schemes follow afterwards (Li et al., 2008).

2.1.1.1 Amplitude Shift Keying (ASK)

ASK is one of the simplest modulation algorithms. In this scheme, the values 0 and 1 are

represented via different amplitudes of the sine wave. Though it just needs a very small

bandwidth, it is very failure-prone to noise and attenuations which strongly decreases the

amplitude of the signal (Schiller, 2001). If only two symbols are used, it is also called Binary

ASK or sometimes also referenced as on-off keying (OOK) (Li et al., 2008).

2.1.1.2 Frequency Shift Keying (FSK)

FSK is a typical modulation scheme for wireless communication and uses in its simplest

form called Binary FSK (BSFK) one frequency for binary 0 and one frequency for binary 1.

This can then be sent as a sequence of frequencies, whereas sudden phase shifts should

be avoided here. For de-modulation, two bandpass filters are applied, those two frequen-

cies get checked and the stronger one is then decoded to the binary value. (Mobilkom-

munikation, Schiller) The bandwidth of FSK depends on the space between the carrier

frequencies representing the symbols (Li et al., 2008).

2.1.1.3 Phase Shift Keying (PSK)

PSK uses phase jumps to encode binary data. A simple implementation would be the jump

between 0 degrees and 180 degrees, which is a binary 0 or 1. That kind of PSK is also

called Binary PSK (BPSK). It consists only of one carrier frequency and is more robust as

it uses the phase-locked loop circuit (PLL) for synchronisation and reconstruction. Though

it is more difficult for the sender and receiver to use (Schiller, 2001).

2.1.1.4 Enhanced and combined modulation techniques

Basic modulation schemes are limited to a relatively small throughput. Therefore, en-

hanced modulation schemes were created and further, different basic schemes can be

combined to increase the effectiveness of a scheme. Yan et al. (2007) investigated an

acoustic Orthogonal Frequency-Division Multiplexing (OFDM) transmitter and receiver. A

bandwidth of 5kHz around a carrier frequency of 12.5kHz was used. An adopted synchro-

nisation preamble with 512 subcarriers was chosen. 1024 subcarriers were used for each

OFDM symbol by using a zero-padded OFDM. A Quadrature Phase-Shift Keying (QPSK)

was applied for each data subcarrier. The system is using a TMS320C6713 digital signal

processing (DSP) board with an A/D interface. The C6713 handles the sampling and the

generating of the sound via the audio codec TLV320AIC23 which runs at a sampling rate

of 44.1kHz.

4

2 Background, Theory and Related Works

Traditional radio frequency transmission cannot be transmitted through the metal casing.

Hosman et al. (2010) developed a multi-tone FSK (MFSK) to counteract that gap. MFSK is

perfect for fading channels, as it is a variation of FSK. On ultrasonic transmission through

materials like metal, an extreme fading effect can be seen. This effect occurs because of

multiple reflections and multiple Lamb waves through the channel. In general, MFSK uses

different combinations of frequencies for encoding and can be seen as a set of matched

filters. On the receiver side, a simple fast Fourier transformation (FFT) is used to decode

the signal by checking the threshold of the chose frequencies. Hosman et al. (2010) used

the band of 280 to 320kHz on a steel beam and installed an inexpensive LM567 tone

detector and a DSP chip, which is set at low power wait mode. The MFSK symbols were

generated with a Tektronix 81150A. Though the data rate is rather low, the reliability of

receiving and transmitting data through steel was high.

Lopes and Aguiar (2003) worked on aerial acoustic device-to-device communication in

ubiquitous computing applications. Their project called Digital Voices adapted common

modulation schemes, which are mainly ASK and FSK. Based on amplitude shift keying,

an 8-frequency coding scheme starting at 1kHz was chosen and the respective frequen-

cies were selected based on a pentatonic scale, which leads to a more comfortable sound.

Another approach on ASK is Harmonic ASK, which adopts 70Hz harmonics over 128 fre-

quencies starting at 700Hz. This method results in a higher bit rate on using the same

signal burst length. On the frequency shift keying side, harmonic FSK was tested and 256

frequencies in a harmonic interval of 20Hz were used to transmit 8-bit symbols. The base

frequency was at 1,000Hz and every symbol lasted 20ms. Further, frequency hopping was

tried out. There the channel’s carrier frequency changes over time.

2.1.2 Acoustic Networks

Sound can be used to set up acoustical networks via available devices. Several projects

already researched on this field and tried to build acoustic networks with various function-

alities as follows.

Hanspach and Goetz (2013) created a covert acoustical mesh network and figured out

a list of features which needs to be fulfilled. A device should work as a sender or a re-

ceiver with access to the input and output process. Further, it should not yet be part of

a network and be able to communicate in a stealth way to not reveal the covert commu-

nication channel. Not only covert communication between two partners was addressed,

but also multi-hop communications between more than two systems. This allows the com-

munication to increase the range of signals significantly. The aim is to send between two

systems which are not connected yet. After testing such a network with business laptops

and HD Audio Controllers, which have a frequency range of 0 to 35kHz, Hanspach and

Goetz (2013) were able to show that the mesh air network is feasible.

5

2 Background, Theory and Related Works

Audio networking represents a fast way of exchanging data, by eliminating the complex-

ity of other technologies. Two smartphones, which are held close together, can already

exchange information on low amplitude to limit the distance for security reasons. Further, a

session pin could be sent to keep the communication secure. Madhavapeddy et al. (2005)

faced two main threats for such audio networks. An attacker could either replay a pre-

recorded pin as a man-in-the-middle attack or learn the session pin to decode the whole

message. Though, this would require recording and transmitting hardware to get a nicely

recorded message of the conversion, which makes it less possible. In addition, replaying

a message would affect both user smartphones, which results in an obvious and therefore

useless attack. Moreover, Madhavapeddy et al. (2005) used a dual-tone multifrequency

scheme to bypass a band-limit of 3kHz in telephone calls. Furthermore, they created a

pairing concept for two computers. Two smartphones get connected via Bluetooth with the

computers and the actual pairing message gets sent via ultrasound over a telephone call.

The audio network only acts as a platform for pairing, whereas the whole remaining data

transmission happens over the Internet.

Sun et al. (2016) proposed a method for obtaining information from devices. Therefore,

smartphones were selected for constructing a hidden data transmission network. Two

ways of communication were researched, electromagnetic waves and acoustical signals.

The system was set up with a computer emitting electromagnetic waves with the help of

frequency modulation (FM) and a smartphone microphone receiving those signals. Further,

the receiver smartphone can send the information via an acoustical signal to any other

smartphone in reach. On the transmitter side, the computer uses a FM carrier frequency

of 81.7MHz and carrier frequencies of 2000Hz and 3000Hz on the audio emitting part.

The FM signals were received by the FM antenna of the smartphone and demodulated by

the FM chip of the receiver. A fast Fourier transformation (FFT) was then used to get the

frequency spectrogram of the received message. This system infrastructure resulted in a

transmission rate of 9.1 bit/s and a maximum distance of seven meters with high accuracy

of 95%. Though it is limited, it is sufficient for the transmission of private data.

Ortega et al. (2014) presented a local area network using acoustic communication as

the physical layer. The architecture features any device, like mobile phones, notebooks

or tablets, which has loudspeakers as emitters, microphones as receivers and a sound

media channel. For communication, a time-hopping code division multiple access (CDMA)

modulation was implemented allowing bi-directional communication via two separate chan-

nels. Messages were sent in time-slots with the assistance of a cryptographically pseudo-

random number generator. As only the receiver has the correct key it allows a secure

point-to-point and multicast communication. Further, the system needs asymmetric error

correction and synchronisation to properly work and avoid collisions. The experimental re-

sults have shown a low error rate, which is acceptable, as it was conceived for low capacity.

6

2 Background, Theory and Related Works

2.1.3 Frameworks and Protocols for Ultrasonic Communication

2.1.3.1 Open Protocols: The SoniTalk SDK

Zeppelzauer and Ringot (2019) created an ultrasonic protocol, which focuses on data-

over-sound. Information sent with the protocol is sent as an individual message composed

of several blocks. For detecting a message, it starts with a "start block" and an "end

block", whereas the starting block has half the used frequencies starting with the base

frequency upwards. In comparison, the end block consists of the other half of frequencies,

the upper ones. Further, every message is encoded in binary and is distributed through

the different frequencies. This results in a barcode alike ultrasonic signal. In addition,

error detection and error correction code are highly recommended and furthermore, an

encryption algorithm would be needed to be implemented as well.

2.1.3.2 Proprietary Frameworks and Protocols

Lisnr is a technology for near-ultrasonic data transmission. It is optimized for different

payloads and acts in the audible and inaudible range. In detail, it is designed for the fre-

quency band of 12kHz to 19kHz. Further, robustness, fine-grained adjustable range, multi-

channels, a local tone generation and security features like cryptography, key exchange or

data packetization are the featured main functionalities of Lisnr. Besides that, they state

that Lisnr has a transmission rate of up to 1000/bits-per-second per channel (Lisnr, 2019).

Examples, where Lisnr is already in use, are for example the official application American

football team for delivering live content in the stadium and the app of an American music

festival called "Made in America Festival", where they sent more information to the festival

guests (Mavroudis et al., 2017).

Shopkick implemented a framework for providing bonus features on visiting stores and

purchasing products via ultrasound. They send out a unique identifier about the exact

position in the store the user is visiting and send this to the Shopkick servers through the

constantly listening mobile app. The company of the store verifies the visit and the user

receives reward points, which can be used for discounts on products. (Mavroudis, on the

privacy) Further, Shopkick uses a full frequency spectrum on analyzing the incoming signal

(Arp et al., 2017).

Silverpush uses five different symbols divided over five frequencies in the range of 18kHz

to 20kHz. As the modulation scheme, M-FSK is implemented to divide the five characters

or letters into five different frequencies. Furthermore, as a kind of error correction, every

letter can only appear once in a message and the letter ’A’ has to appear in each signal.

On the receiving side, the Goertzel algorithm is used to retrieve the five frequencies in a

message (Arp et al., 2017).

Google Nearby implemented discovering devices through various ad hoc radio technolo-

gies. A random token gets broadcasted with a length of three seconds. Receiving devices

7

2 Background, Theory and Related Works

can decode the sent token. For reliability reasons, the message is sent repeatedly with

a pause of one second in between. All further communication and data exchange, after

finding the correct token, happens through the Google Cloud (Legendre, 2015).

Sonarax provides an ultrasonic protocol which should work from 20 cm to 35 m for a

machine to machine (M2M) communication. Further, it has implemented encryption meth-

ods and supports well-working communication on moving devices. Besides that, indoor

navigation is implemented and advanced analytics for collecting data on the communica-

tion events is available. It is only on the software side and no special hardware is needed

(Sonarax, 2019).

Copsonic features a technology for ultrasonic communication between two devices. It is

based on just microphones and speakers and also uses security as one of their features.

The operating frequency band is between 3kHz and 40kHz and provides a detection speed

of less than 300ms. Moreover, Copsonic offers data transmission speed up to 15 kbp/s and

gives the chance of full-duplex transmission without self-interference (CopSonic, 2019).

NearBytes presents contactless communication technology, which is compatible with all

computers and mobile phones. They focus on providing an easily, quickly and securely

way of communication with microphones and loudspeakers. Further, they are giving the

user a security layer and integrated authentication. Besides that, NearBytes can communi-

cate between different operating systems and does not need additional hardware besides

speakers and microphones (NearBytes, 2019).

2.1.4 Ultrasonic Applications

2.1.4.1 Context-Awareness

Bisio et al. (2018) created a method for perceiving the environment via ultrasounds. Based

on actively sending out ultrasonic signals and listening continuously at the same time for

echoes of the emitted ultrasonic signal. The architecture consists of a signal generator,

a pre-processor, feature extraction, and classification. Therefore, a smartphone was used

for implementing this system. The used method builds upon periodically sending ultrasonic

pings and listening to echoes of those. The emitted signals are sinusoidal waves with the

carrier frequency of 20 kHz. A bandwidth-filter with the bandwidth of 2 kHz filters then the

echoes from the environmental noise and further buffers them to average them together.

Next, nine features get extracted and then classified by an algorithm.

Bisio et al. (2018) proposed two scenarios, which were indoor-outdoor detection and

state detection on wearing earphones. Testing the indoor-outdoor detection returned sev-

eral results, but is still lacking on mobile devices. More than 17600 pings of a smartphone

were recorded and divided into the two classes: indoor and outdoor. It was discovered that

there is an accuracy versus latency trade-off as, the more echoes were averaged together,

the longer it takes to retrieve a response. Several classifiers were used and all of them

achieved good results. Besides ultrasound, the light sensor, the attenuation of the signal

8

2 Background, Theory and Related Works

and the magnetic field were compared and delivered worse outcomes than the ultrasonic

method. Another impact, which was found out, was the role of clothes. Normally, the

smartphone is in the pocket of the trousers, which lowers the accuracy in comparison to

the laboratory settings. Besides that, the Doppler effect could change the frequency of the

echoes. Further, the room size could attenuate the signal and lead to weaker echoes. The

last impact, they found, was crowdedness, which could produce false echoes on reflecting

the signals on other people (Bisio et al., 2018).

The second scenario, proposed by Bisio et al. (2018) was earphone wearing state de-

tection. While smartphones can detect whether an earphone is connected via the audio

jack or not, it cannot recognize, if those are worn by the user. Thus, ultrasound can help

in detecting that state. An ultrasonic signal can be sent out via the earphones and echoes

and attenuation can be analysed. As this acts on the ultrasonic frequency range, the user

cannot hear it and it will not effect the quality of the played song. Three scenarios were

found and further analysed. Either both earphones are worn, none of them are worn, or

only one of the two is worn. The last scenario was separated and substance for another

scenario. If the user wears only one earphone, it could be recognized, if it is the left or

right one, with using the stereo sound output. Results showed, that the three scenarios

had an accuracy of 98%. Only the worn earphone, if only one is worn, was not detectable.

Though, this was solved by a separate scenario on exploiting the stereo output (Bisio et al.,

2018).

2.1.4.2 Indoor Localization

Ultrasound can be used for localization in closed rooms. Lazik and Rowe (2012) created a

system for indoor localization via ultrasonic chirps. Their system consists of many transmit-

ters and a receiver, which can by any mobile device being able to record between 19 and

24 kHz. The transmitters are synchronized and continuously emit a unique identification

code. This happens simultaneously for the whole transmitter infrastructure. As they do not

synchronize the receiver with the transmitting devices, they use a time difference of arrivals

(TDOA) pseudo ranging technique. The signals transmitted can be received with a differ-

ence in time and therefore, every receiver can calculate the relative timing itself. In order

to have a stable transmission, they decided on using pulse compression on linear chirp

signals. This modulation method increases the range resolution and the receiver sensitiv-

ity by effectively increasing the signal-noise ratio (SNR). Chirp wave-forms sent with pulse

compression linearly increase in frequency and result in a compressed signal. Chirps can

be detected much simpler by a correlation with the original chirp. To achieve multiple ac-

cess transmissions, chirp-rates are used, where every chirp consists of a sequence of two

Hamming codes. On the receiving side, matched filtering is applied, which is convolving

the incoming signal with a time-reversed version of the expected incoming signal nature.

The experiments were done by using an audio DAC/ADC, a higher frequency sensitive

9

2 Background, Theory and Related Works

microphone, an iPhone 3G and piezoelectric tweeters. Timing accuracy and location accu-

racy were evaluated and the result was that 95% of the test points were localized correctly

within a 10cm accuracy.

Figure 2.1. System overview of the Acoustic Location Processing System (ALPS), (Lazik
et al., 2015).

Lazik et al. (2015) presented a system called Acoustic Location Processing System

(ALPS), which augments Bluetooth Low Energy (BLE) transmitters with ultrasound. ALPS

consists of three or more transmitters, which are relatively flexible in terms of position-

ing.This overview can be seen in figure 2.1. Those transmitters are time-synchronised

and are compound of an ultrasound transceiver board, a BLE board, a piezo bullet tweeter,

and a battery pack. Especially during hardware research, they worked on finding a sen-

sitive loudspeaker, which is capable of transmitting frequencies between 18 and 24kHz.

Two modulation methods were used in ALPS, on the one hand, ultrasonic chirps and

on the other using the ultrasonic carrier for ranging information. They were using time-

division multiplexing TDMA for the transmission. Between the beacons themselves, a

Micro-Electro-Mechanical System (MEMS) microphone on the level of transceiver board

was implemented, to achieve inter-beacon ranging from two beacons at the same time,

by triggering them. One beacon is sending and the other listening. For evaluation of the

system, user-assisted mapping was applied and an algorithm was used, based on the

inter-node ranging, estimation of z plane and user-specified x - y plane. Lazik et al, could

achieve an average error of 19.8cm and 16.1cm in the experiments. Overall, the user’s

location can be tracked within less than 100cm.

Murata et al. (2014) proposed another concept of indoor positioning, where the user is

the transmitter via their smartphone. The system consists of several microphone sensors

and microcontrollers positioned inside the place and the emitting device, which is fulfilled

by the user’s smartphone. The transmitter and one receiver are not synchronised with each

other, therefore only a relative delay time can be captured. At least four microphones are

10

2 Background, Theory and Related Works

needed to capture three delay times, with the synchronized microphones. Thereby, the x,

y and z coordinates can be calculated. Feasibility tests were done by using the frequency

17kHz as the main transmission one and sending out small 400µs bursts in intervals of

35ms. For measuring, a simple fast Fourier transformation (FFT) was applied. Static tests

as well as dynamic tests with movable objects were conducted and showed that the system

is accurate enough for both conditions.

Thiel et al. (2012) described an algorithm for a proximity detection method based on

Bluetooth and ultrasonic beacons. As a frequency range, the ultrasonic band of 18kHz to

23kHz was chosen, as it is mostly inaudible to humans. Next, a kind of on-off keying was

used on a continuously sent sine wave on the carrier frequency of 18kHz, which is based on

amplitude modulation. A rather short signal length was used on getting a fast recognition

with a fast Fourier transformation (FFT). Furthermore, the magnitude of the received signal

is needed, as the interest was only in the amplitude. The detection is based on two sliding

auto-correlating windows with different sizes. A simple threshold is then the indicator of the

detection. Further, experiments were done on standing and walking scenarios and showed

a big discrepancy between those two. While the standing scenarios work well, the walking

ones could still be improved.

Carotenuto et al. (2018) realized a method for ranging radio frequency identification

(RFID) tags through ultrasound. Several RFID chips get placed into a room, whereas they

get an ultrasonic chip. The beacon sends out a signal via a RF radio transmitter, which

activates the listening of the ultrasound chip on the RFID tags. The ultrasound chirps get

received by the RFID tags with delay, which is saved on the tags. Further, the beacon

consists of a microcontroller, a DAC, a RF transmitter, an acoustic emitter, and a power

amplifier. The RFID-based sensors have a microphone for receiving ultrasonic chirp sig-

nals. Moreover, a central processing unit with a RFID reader is needed to gather all-time

data of the RFID tags. Though the RF synchronisation delay can be figured out and cal-

ibrated, a jitter is still available. Furthermore, a frequency band of 15kHz up to 40kHz is

chosen and a single chirp message consists of 1024 samples at a 192 kSamples/s sample

rate. The length of one signal is 5.33 ms and gets smoothed by a Hamming window. Ex-

periments on the processing chain, accuracy and reliability resulted in a ranging accuracy

of 1.2 mm within a range of 2.3 m.

2.1.4.3 Ultrasonic Communication

Arentz and Bandara (2011) implemented a short-range directional near ultrasound com-

munication channel for iOS devices and other smartphones. Based on their research, they

created a system architecture using frequencies between 20kHz and 23kHz. Tested de-

vices were able to produce and receive frequencies up to 23kHz, because of the maximum

sampling rate of 48kHz, which many of their devices were able to. The encoding is using

different duration for the transmission pulses. Those pulses are 16-bit sample values fre-

11

2 Background, Theory and Related Works

quency based on a sine wave function. On receiving this ultrasonic message, a bandpass

filter is applied as well as normalization and a low pass filter as pulse edge detection. After

using a binary decoder, a string of bytes from those pulses is the result. Their transmission

protocol is working on trains, in busses and outside without a loss in quality, but is restricted

to about 80 cm and a rather small tilt angle until the reception of signals gets impossible.

Getreuer et al. (2018) presented a protocol for ultrasonic communication using the fre-

quency band of 18.5kHz to 20kHz. The main target platform was mobile devices. The quick

and localized exchange of sound delivers the perfect base for interactive mobile applica-

tions. Direct-sequence spread-spectrum modulation (DSSS) is in use as of its robustness

against noise. The data will be modulated so that every frame is a period of the DSSS code

and has one symbol of data encoded. Further, this modulation method should avoid the

Doppler effect and weak signal strength, which can both impede communication between

mobile devices. After experiments, the results in real-world environments showed that the

noisier surroundings are, the more unreliable the system gets. Still, the protocol is robust

enough against background noise and motion up to two-meter distance indoors.

Ka et al. (2016) proposed a method of near-ultrasound communication for 2nd screen

services. On achieving a transmission data rate of 15bps and using a low volume on

a non-line-of-sight scenario over a few meters, chirp quaternary orthogonal shift keying

(QOK), novel synchronization and carrier sensing algorithms were needed. Target appli-

cations collected were, on the one hand, the automatic data reception during TV shows

and, on the other, commercial tracking purposes of companies. Only receiving instead

of constantly pulling as in previous 2nd screen implementations, makes the method less

energy-consuming.

PriWhisper, a keyless secure acoustic short-range communication system was imple-

mented by Zhang et al. (2014). The goal was to build another channel that resembles

near-field communication (NFC). It is based on aerial acoustic signals and can perform

non-line-of-sight communication. The target platform was smartphones, which had the ad-

vantage over NFC that every smartphone has a performant speaker and microphone for

performing PriWhisper. Similar to NFC, PriWhisper works on kind of touch, but it allows

bigger distances than NFC. Though for security reasons, the space between two devices

should be rather small. PriWhisper consists of, on one side, a channel encoder, a modu-

lator and on the other, a channel decoder, a demodulator, and a speaker. To avoid trans-

mission errors, PriWhisper is using a cyclic redundancy check (CRC-8). Furthermore, the

modulation of the signal is frequency-shift keying (FSK) which uses one multi-bit symbol

per frequency on a carrier frequency of 9kHz. Further, PriWhisper uses adaptive signal

strength selection by recording the ambient noise level 0.1s after the MFSK modulation

happens. On the jamming side, a random white Gaussian noise signal around the carrier

frequency is computed, which will be filtered out again on the receiver device by taking

its own jamming signal and subtracting this from the received signal. In tests, PriWhisper

resulted in a small package error rate of 1.5% in noisy indoor and outdoor situations.

12

2 Background, Theory and Related Works

Lin et al. (2015) created a near-field communication channel over inaudible sound called

A-NFC. The advantages over other technologies would be that it is easy to port, as it only

happens on the software side. Further, A-NFC can perform two-way communication only

over the inaudible acoustic channel under several factors like channel efficiency, system

latency, and channel reliability. The chosen frequency band of 15.8kHz to 20.6kHz should

provide an inaudible channel for data transmission. In addition, real-time communication

is difficult to achieve, as A-NFC is dependent on the OS and the hardware of the device

like RAM. Thus, it requires a tolerance for non-real-time communication. Besides that, the

varying hardware of the devices needs to be included. A-NFC further uses quadrature

phase-shift keying (QPSK) and automatic gain control (AGC) to adjust the amplitude to a

suitable level on different chipsets. Next, Testing different center frequencies resulted in

the frequency 18.525kHz on a symbol length of 1.81ms.

2.1.4.4 Internet of Things and Wearables

Microcontroller-based systems are called embedded systems. They receive inputs via dif-

ferent simple interfaces like cameras, buttons, switches or touchpads. Those complete

systems connected to the Internet result in a basic Internet of Things (IoT) system. Things

can be cars, tools or devices of any kind which have a connection to the Internet and are

able to communicate with each other. An IoT system normally consists of three compo-

nents: a device that can handle the Internet connection, the connection to the Internet

itself, for example via Wi-Fi or Ethernet, and backend server, which handles the storing,

processing and sharing of the information. Alzahrani (2017) set up a simple and general

framework and created two interfaces for it. One implementation was based on Arduino

and another one on Raspberry Pi. Both were upgraded with Wi-Fi shields or adapters

via USB, whereas the Arduino is easy to attach and lightweight option and the Raspberry

Pi with a faster processor and a larger memory. The framework has several input sensors

such as GPS, smoke sensors or humidity and temperature sensors, and on the other hand,

output sensors like LEDs and buzzers. Further, a simple web server with a connected

Android application is needed and between the sensors and the backend, the previously

described interface has its place. Several sensor scenarios were established and tested

like GPS acquisition, weather sensing, liquid levels, smoke detection, soil sensing, and

distance measuring.

Santagati and Melodia (2017) presented a framework for ultrasonic communication on

wearable devices called U-Wear. Currently used wearable medical devices are based on

radio frequency (RF). U-Wear is completely implemented on the software side, as it just

needs speakers and microphones for sending signals in the frequency band of 17kHz to

22kHz. Ultrasonic signals do not go through walls and cannot be that easily distorted by

jammers, only if they are near the victim. Further, there is no conflict with the existing

RF technologies and this spectrum is unregulated, which gives more freedom to adjusting

13

2 Background, Theory and Related Works

the signals. In general, it is more adaptable in terms of features and functionality than

other RF technologies. U-Wear uses Gaussian minimum-shift keying (GMSK), which is

a special form of FSK and produces a clicking-free transmission because of its phase-

continuity. The framework is made for either the master/slave-concept between devices or

peer-to-peer communication. Experiments showed a data rate of up to 2.76kbit/s with a

bit-error-rate of 10-5 and therefore a reliable framework to exchange data between medical

devices.

2.1.5 Security Aspects of Ultrasonic Communication

Deshotels (2014) categorizes the abuse of sound-based channels in two different seg-

ments. Data exfiltration can be either performed in an intra-device way or in an inter-device

way. Both ways are based on inaudible sound. The intra-device communication happens

between applications on the device, which would otherwise not be able to communicate

with each other. For example, application A handles secret data and has no other priv-

ileges. Application B has network access and several other permissions. Application A

can send data over inaudible sound and Application B can receive this message via the

microphone on the same device. Second, the inter-device method happens either by a

trojan horse, which sends data via sound or via any application, where the company wants

to abuse the possibility of ultrasound transmission. Another device or even networks of

devices can then receive the unwillingly sent audio data.

Deshotels (2014) set up two proofs of concept to show, how well sound-based covert

channels work. They completed two different experiments, one on isolated sound, which

was rather roughly built, and one on ultrasonic sound, which should show the limits of

attacks. The isolated experiment was performed by using a Samsung Galaxy S4 as trans-

mitter and a Google Nexus 7 (2003 Edition) as a receiver. The transmission was achieved

via vibrations of the accelerometer and received by an accelerometer monitor application.

They proofed successful communication between these two devices by sending a pattern

of vibration and pause. Though this experiment used two independent devices, they wrote

that this method would work on one device.

For the ultrasonic approach, Deshotels (2014) used a transmitter based on frequency

shift keying (FSK) to send digital data. The FSK was set up on two frequencies for 0’s and

1’S, which were 18kHz and 19kHz. Their ultrasound file consisted then of three parts: 128

symbols of the same frequency as an identifier, a 128 symbols large predefined pattern of

high and low frequencies to accurately locate the start of the data and the digital message

converted from an ASCII string to binary data. The receiver, which was an Android applica-

tion, always knows the first two parts of a received message and decodes and displays the

third part converted back to a string again. In addition, optimization methods were added

by decoding the message 10 times with a slightly moved starting point. Whereas, a reduc-

tion of the amplitude at the beginning and at the end of a symbol improved the steadiness

14

2 Background, Theory and Related Works

of the decoding against audible clicks. Based on that data transmission, they tested on

getting an effective bitrate, which resulted in a maximum bitrate of 345 bits per second,

and on finding the maximum distance for transmission, which was 100 feet with a bitrate of

8.61 bits per second before the error rate increases significantly.

Hanspach and Goetz (2013) described several acoustical mesh network applications ex-

ploiting security measurements. A keylogger could be implemented through covert acous-

tical networks. One communication partner gets infected and sends every keystroke via

acoustic signals to other devices in the network. Furthermore, tunneling over the Internet

is a possible threat. The attacker could gather all data from a covert acoustic network and

sends the information to a SMTP server. Two-factor authentication based on acoustic net-

works could be broken by extracting the authentication feedback and using it to get access

to whatever the other devices asked for. In addition, every small text file, limited through the

bit rate, could be periodically sent out to the covert acoustic network. One solution found

out, was audio filtering, if the input and output were not able to shut off. A simple bandpass

for the concerning frequencies would be a first step.

Thinking one step further, Zeppelzauer et al. (2018) developed a technology-agnostic

and robust to noise firewall for ultrasonic signals, called SoniControl. It is based on a robust

background model that is continuously updated. The input is high-pass filtered for removing

everything hearable and gets computed through a short-time FFT. Further, a cyclic buffer is

started, where all input frames are stored and processed as soon as the buffer is full. Next,

the Kullback-Leibler (KL) divergence is computed between the buffer and the background

model. With the help of a simple threshold, a detection can be identified. After that, an alert

pops up and lets the user decide if they want to block the signal or not. Blocking happens

either by jamming the incoming signal with white noise in the inaudible frequency range or

by using the exclusive access to the microphone of the smartphone. No other applications

can use the input as long as the firewall obtains it. The firewall has been implemented on

Android starting with Android 4.1 and above.

Figure 2.2. Four privacy threats which are generated by the ultrasonic channel: Media
Tracking, Cross-Device Tracking, Location Tracking and Deanonymization (Arp et al.,

2017).

Arp et al. (2017) gathered several privacy threats via the ultrasonic side channel on end-

users mobile devices, as seen in figure 2.2. An application, which is listening to ultrasonic

15

2 Background, Theory and Related Works

signals via the microphone, is just needed to raise privacy issues. The four threats are

working like follows:

• Media tracking was identified at the beginning. During commercials in Web, TV or

Radio, ultrasonic messages can be hidden and those messages can carry informa-

tion like timestamp or an identifier of the watched commercial. On the receiver, the

malicious application can create a media profile based on the watched commercials,

though they are sent out anonymously. This method results in a detailed user profile

on what the user watched, where he watched it and when he watched it.

• Cross-Device-Tracking gets enabled through the ultrasonic channel. Devices of one

user, which are not connected yet, can be assigned together if the same signal gets

received several times. This opens the possibility to create a more defined user pro-

file on gathering data over several devices. Even private and business devices can

be logically connected, though they are normally used separated from each other.

• The possibility to track the location of the user exists through ultrasound. A simple

location identifier can be sent out and reveals the when and where the user was.

This method bypasses the use of GPS and tracks every indoor movement the user

performs.

• On services, which feature anonymization, can reveal the real identity of a user, by

sending out an ultrasonic message while executing the service, like payment with

bitcoin. The de-anonymization happens then through the listening mobile device.

Zhang et al. (2017) presented the vulnerability of speech recognition systems on ultra-

sonic attacks and designed an inaudible attack called DolphinAttack. Technologies like

Amazon Alexa, Siri or Google Now convert identify speech and convert it to machine-

readable actions. Such systems are based on three subsystems: voice capture, speech

recognition, and command execution. The threat model of DolphinAttack needs to meet

several conditions. During the attack, there is no access to the target device, which makes

altering the system impossible. The owner is not interacting, while the attack is performed

and further, the commands will be inaudible. Furthermore, malicious actions like spying,

injecting fake information, denial of service, concealing attacks and the visiting of malicious

websites can be achieved through DolphinAttack. The attack exploits the nonlinearity of

the electric components which create new frequencies. Having that in mind, the attack

starts with either text-to-speech bases commands or commands through a concatenative

synthesis of pre-recorded voice samples. The commands are then modulated by amplitude

modulation. Further, the tests were performed with a powerful transmitter with a sampling

range of 300MHz and a portable transmitter, which was represented by a smartphone with

a sampling rate of 48kHz. The results of the feasibility experiment of the attack were suc-

cessful.

Mavroudis et al. (2017) described considerations about privacy and security regarding

ultrasonic ecosystems. Applications, which use ultrasound-based actions, need full access

16

2 Background, Theory and Related Works

to the microphone. This gives the application not only access to the ultrasonic frequencies,

but also audible frequencies could be further processed. This circumstance violates the

least privilege principle. Furthermore, developers who want to use ultrasound are rated

as potentially malicious. Especially, bad information and no-opt out of companies using

ultrasonic communication are strengthening this opinion. Mavroudis et al. (2017) pointed

out several vulnerabilities of ultrasonic ecosystems and their active participants. Users of

anonymity networks like Tor could be deanonymized through hidden inaudible messages.

Those signals are sent from the opened service and get captured by the device of the

user. Through this connection, user data, which reveals the identity of the user, could be

forwarded to the attacker. Further, the lack of authentication could be abused in terms of

spamming the users devices with signals, which should forward them to the service of the

attacker and influence the content they receive. Last, information from the device of the

user could be requested through ultrasonic signals. The attacked device responds with

personal data saved on the phone.

2.2 Related Communication Technologies

Beside ultrasound, alternative technologies like Bluetooth or NFC are already in use for

communicating between different devices. The following section shows the features of

those alternative technologies more in detail, lists additionally complementary technolo-

gies, which can be combined with ultrasonic communication, and gives information on the

relation to ultrasonic communication.

2.2.1 BLE - Bluetooth Low Energy

Bluetooth low energy (BLE) needs only a part of the energy that Classic Bluetooth is con-

suming. Therefore devices using BLE can be powered by small, coin-cell batteries and

makes it possible to use in areas like sports, fitness, health care or human interfaces like

mice or keyboards. BLE can reach distances up to 200 feet and beyond, which makes

it capable of devices in-home. Bluetooth low energy features, for example, a low cost,

multi-vendor interoperability, enhanced range, different power consumption modes and the

ability to run for years powered from just a coin-cell battery. BLE can either be used to-

gether with Classic Bluetooth or as a standalone sensor (Bluetooth SIG, 2013).

Bluetooth low energy supports data packet sizes of 8 octets as a minimum of up to

27 octets as the maximum. The data rate is 1 Mbps. Further frequency hopping can be

used in BLE to minimize the interference of other technologies in the used Band of 2.4

GHz. In addition, BLE chips have high intelligence in the controller, which wakes up the

host only if it is really needed. Therefore more energy can be saved and only the controller

needs power. BLE performs connection setup and data transfer with 3ms and creates only

a low latency. Furthermore, a high range over 100 meters can be achieved and still be

17

2 Background, Theory and Related Works

robust as a strong 24 bit CRC is used on all packages sent. Besides, the data packets get

encrypted by Full AES-128 and every packet has a 32-bit access address, which allows

billions of devices (Bluetooth SIG, 2013).

In comparison to ultrasound, Bluetooth goes walls, whereas ultrasonic communication

can be limited to rooms. Further, ultrasound can be configured for small distances of

several cm or for bigger distances with several meters, which is more imprecise on the

Bluetooth side.

2.2.2 Wi-Fi

Wi-Fi operates within the electromagnetic spectrum and belongs to the radio frequency

(RF) technologies. The wireless network gets spread by access points (AP), which broad-

cast the wireless signal, for example, an Internet connection. On connecting with the AP,

a network adapter is needed. Wi-Fi is described in several wireless technology standards

(Webopedia, 2008).

The first wireless network standard was called 802.11 by the Institute of Electrical and

Electronics Engineers in 1997. (Spectrum, 2016) The first standard only supported 2 Mbps,

which was too slow for most of the applications. Since then it got iterated several times.

Next, the first iteration 802.11b was already capable of 11 Mbps and was called Wi-Fi 1.

Further, the next version 802.11a supported a bandwidth of 54 Mbps and was using 5GHz

as the main frequency instead of 2.4GHz. The first version, which supported the dual-band

wireless connection was 802.11ac. Both 2.4Ghz and 5GHz were in use and a bandwidth

of 450 Mbps and 1300 Mbps was possible (Mitchell, 2019).

Like other forms of radio communication, wireless networks have to cope with interfer-

ences. Those interferences can arise on the usage of different building materials in-house,

like concrete, drywall, glass, wood or metal, or other devices, which operate at the same

frequency band as access points. Wi-Fi supports encryption by having several schemes

implemented. The most known ones are Wired Equivalent Privacy (WEP), Wi-Fi Protected

Access (WPA), and Wi-Fi Protected Access 2 (WPA2). WEP is already old and not really

secure anymore. Therefore WPA or WPA2 should be used, in combination with longer and

more complex passwords (Webopedia, 2008).

Wi-Fi uses a much higher operating band than ultrasonic applications. Further, the sig-

nal is, like with Bluetooth, sent through walls and cannot be limited to a room like with

ultrasound.

2.2.3 NFC - Near Field Communication

NFC, short for near field communication, represents a short-range, low-power communica-

tion protocol between two devices. A radio-wave field gets set up by one device, which is

detected by a second one. Small amounts of data can be transmitted through this channel.

18

2 Background, Theory and Related Works

Though it has a rather slow data transfer rate of 0.424Mbps compared to other technolo-

gies, it only consumes 15mA of power, has better security possibilities and does not need

a "pairing" process like Bluetooth (Nosowitz, 2011).

NFC consists of three basic principles "sharing, pairing and transaction". The third one,

transaction, is probably the most frequently mentioned when talking about near field com-

munication. A simple device with a NFC chip, like a smartphone, can be quickly set up as

a credit card or debit card. It can be used as one just with a tap on the transaction con-

sole. Further, things like library cards, hotel room key cards, public transit passes or office

building passcards can be replaced by NFC. Though security concerns are still there, near

field communication is easy to configure and objects like an ID or keys could be sooner or

later replaced by the phones NFC. Sharing data is a bit more difficult than the other two

principles. Related to the low data rate, videos or music cannot be shared via NFC. Near

field communication acts here more like QR code, which can be scanned and is leading

to the shared resource. More or less it is made for small portions of data like exchanging

contact information (Nosowitz, 2011).

NFC needs a special chip for communicating with other devices, whereas ultrasound just

needs a microphone and a loudspeaker. Further, in comparison to ultrasonic communica-

tion, NFC is constructed for only small distances of several millimetres and centimetres.

Ultrasound can achieve both communication on small distances, as well as on larger dis-

tances of several metres.

2.2.4 LoRaWAN

Low-Power, Wide-Area Network (LoRaWAN) operates as the physical layer to set up a

long-range communication link. Long Range (LoRa) uses the chirp spread spectrum and

still resembles FSK modulation, though it increases the communication range. LoRa rep-

resents the first low-cost version of that communication. A simple gateway enables LoRa

communication over hundreds of square kilometres. LoRaWAN especially fits for Internet

of things (IoT) application, which needs a long lifetime without constant maintenance and

a small amount of data transmission of sensors over long distances in a non-critical time

span. Further, network nodes are mostly connected in mesh networks and forward packets

from the end-node to the cloud-based network server. The network server then inter alia

manages the network, filters redundant packets and performs security checks. End-nodes

work asynchronous and send data as soon as it is ready. Therefore, a LoRaWAN gateway

has to cope with a very high capacity of nodes. Furthermore, LoRaWAN is using AES

encryption for security (Alliance, 2015).

LoRaWAN can be seen as a complementary technology, which is an add for ultrasonic

communication. Whereas, ultrasound operates on small distances, LoRaWAN can send

small data packages over long distances with low energy consumption. This makes the

system independent from the Internet. In combination both play well together for specific

19

2 Background, Theory and Related Works

kinds of use cases. Whereas, ultrasound would handle the short distance communication

and LoRaWAN the sending of data over longer distances.

2.2.5 5G

5G will enable the delivery of data within delays of less than milliseconds and bring down-

load speeds of 20 gigabits per second, which is a big step from 4G, where speeds up to

1 Gb/s can be achieved. Five technologies should help in making 5G successful. Millime-

tre waves could solve the problem of more and more devices used at the same time. This

could enable using frequencies between 30 and 300 gigahertz. I comparison to the length

of radio waves, which measures tens of centimetres, millimetre waves are only between

1 and 10 mm long. They were already tested with stationary points. A major problem

occurs in sending those signals through buildings. Those waves will get absorbed and

lead to the next technology called small cells. Small cells prevent from dropping signals

throughout cities. Those portable miniature base stations can be set up in short distances

of about 250 metres and work as an extension to the user. The smaller size of the new

cells makes an advantage over traditional cell antennas, as more small antennas can be

set up on houses. Though frequencies can be reused in different areas, rural landslides

make it harder to set up a good network of such antennas. To overcome this problem,

5G base stations can have more than one antenna. This is called massive multiple-input

multiple-output (MIMO) (Spectrum, 2017).

While old 4G base stations only can handle eight transmitter and four receiver antennas,

5G stations hold more than a hundred of those. This raises the capacity by a factor of 22 or

greater. MIMO is the acronym for multiple-input multiple-output and stands for wireless

systems with many more transmitters and receivers on a single array. Further, MIMO

achieves new records in spectrum efficiency but also brings interferences, where another

technology called Beamforming can help. Beamforming calculates the most efficient way

to deliver user data. The best transmission route will be identified by signal-processing

algorithms, sending data packets into many different directions. This happens under a

coordinated pattern including arrival time and packet movements. Furthermore, another

problem can be solved by Beamforming, as objects, which block the millimetre waves can

be avoided. Last, full-duplex helps in achieving low latency and high throughput on 5G. It

enables the possibility of sending and receiving a signal on the same frequency at the same

time, by using silicon transistors, which act like high-speed switches. All these technologies

should provide a base for ultralow latency and record-breaking data speeds opening new

opportunities for smartphone users, VR gamers or autonomous cars (Spectrum, 2017).

5G can be seen as a complementary technology to ultrasound. For projects with a

higher throughput needed and time-critical transmissions 5G fits as an addition to ultrasonic

communication.

20

2 Background, Theory and Related Works

2.3 Alternative Communication Protocols to the Thesis

Besides ultrasound, different non-acoustic communication protocols are already in use in

the area of IoT. UNITA uses WebSockets and REST, which are further described in the

chapter 3.4.3. The following protocols would be alternatives to those used protocols in

UNITA.

2.3.1 MQTT

MQ Telemetry Transport (MQTT) is designed as a lightweight broker-based message pro-

tocol. It is using publish and subscribe and is simple, open and easy to implement. MQTT

is favoured in use cases where the network is expensive or has a low bandwidth and when

it should run on an embedded device due to limited computing resources. Further, MQTT

features a provision of TCP/IP network connectivity, an agnostic view on payload content,

a small transport overhead and notifications on the disconnection of a client. On message

delivery, there are three states of how messages arrive. Either message delivery with best

efforts, but with possible message loss, covered message, where duplicates could occur,

or message receipt exactly once, if loss or duplicates distort the result. MQTT has a fixed

header size for different message types. In addition, a variable header size for specific

command messages is provided by the protocol (Eurotech, 2010).

2.3.2 CoAP

Constrained Application Protocol (CoAP) represents a specialized web transfer protocol.

A goal was to create a generic web protocol. It is constructed especially for constrained

nodes and constrained networks. CoAP is based on a request and response interaction

model between application endpoints. Further, M2M requirements are fulfilled, UDP is

used supporting unicast and multicast and asynchronous message exchange is applied.

In addition, CoAP owns a low header overhead and parsing complexity, provides URI and

Content-type support and implements simple proxy and caching capabilities. Besides that,

it uses a stateless HTTP mapping. Similar to the client/server model of HTTP, CoAP fo-

cuses on machine-to-machine interaction where both nodes represent the client and server.

Furthermore, it works on asynchronous interchanges over a datagram-oriented transport

method. Four types of messages are defined, Confirmable, Non-confirmable, Acknowl-

edgement and Reset (Shelby et al., 2014).

2.3.3 AMQP

Advanced Message Queuing Protocol (AMQP) is an interoperable enterprise-scale asyn-

chronous messaging protocol. AMQP includes a defined set of messaging capabilities

and represents a network wire-level binary protocol. The messaging model consists of

21

2 Background, Theory and Related Works

three main types of components: exchange, which receives messages and routes it to

the message queue, message queue, which is storing the messages until it can be used,

and binding, which represents the routing criteria between exchange and message queue.

Further, this model is a classic message-oriented middleware and can be compared to an

email server. AMQP can be described as multi-channel, secure, asynchronous, negotiated,

portable, efficient and neutral. (Vinoski, 2006)

2.4 OSI-Model

UNITA is based on different layers, which are inspired or directly refer to the OSI-Model.

The following sections give a basic understanding on the functionality of each OSI-Model-

layer. The Open Systems Interconnection model (OSI model) sets a standard for telecom-

munication functions and computing systems. It is a conceptual model and consists of

seven layers: Physical, Data Link, Network, Transport, Session and Presentation layer.

The OSI model determines, what a layer needs to provide for the next layer (ITU, 1994b).

Layer 1 - Physical Layer: The physical layer is the bottom layer and provides mechanical

and electrical tools for activating and deactivating physical connection as well as sustaining

this connection and sending bits. The connection can be established via electrical signals,

optical signals, electromagnetic waves or sound. Furthermore, the physical layer handles

how bits get sent and in which kind of bit/symbol sequence they get transferred (ITU,

1996a).

Layer 2 - Data Link Layer: The data link layer guarantees the correct transmission of the

information. It divides the information into data blocks (frames) and adds checksums. In

addition, the data link layer handles the sending speed of the frames. The resending of the

frames itself is not part of the layer (ITU, 1997).

Layer 3 - Network Layer: The network layer handles the correct shifting of connections

and the onward transmission of data packets. Further, routing for packets with the best

combination of nodes is one task and creating and maintaining cross-network routing tables

comes along with that (ITU, 2002).

Layer 4 - Transport Layer: The transport layer splits the data into segments and pro-

vides congestion avoidance. Further, the layer implements multiplexing to handle multiple

endpoints on one node via ports. The transport layer checks the previously added check-

sum and starts an automatic repeat request to retransmit wrong received or lost segments

(ITU, 1996c).

22

2 Background, Theory and Related Works

Layer 5 - Session Layer: The session layer ensures an organized and synchronized

data exchange between two systems. Checkpoints get configured to restart and resyn-

chronize the transport process after a blackout. This session restoration feature prevents

data transmission from full restarts. Further, it handles authentication and authorization

(ITU, 1996b).

Layer 6 - Presentation Layer: The presentation layer works on the data compression

and on the encryption of the information so that no other application layer can read the

data. Encryption could also be handled in the application, session, transport or network

layers, which brings different advantages and disadvantages. Further, it translates the data

from a system-dependent format to an independent one (ITU, 1994c).

Layer 7 - Application Layer: The application layer provides all functions for the applica-

tions. On this layer, all input and output happen whereas the application itself is not part of

the layer (ITU, 1994a).

23

3 UNITA - An Ultrasonic Beacon

UNITA is a SDK for developing applications using ultrasonic communication, as well as a

hardware solution for sending and receiving ultrasound signals, called UNITA beacon. It

consists of a development kit for implementing applications on the beacon and for client

applications. Further, a server setup is included. This chapter is structured in two parts: the

hardware implementation and the software implementation. The hardware part revolves

about the creation of the beacon and the software part again structured in four subsections:

• Operating system

• UNITA SDK for the client side

• Used protocols

• UNITA Server

3.1 General Requirements of UNITA

Within UNITA, a software development kit and a hardware setup for creating own projects

using ultrasonic communication, should be developed. On the one side, hardware for an

ultrasound beacon needs to be gathered and assembled. On the other, a software base for

those beacons and for client applications is needed. In addition, server software for data

upload and download, and further processing is required.

3.2 Environment and Architecture of UNITA

The architecture of UNITA consists of three main components: ultrasonic beacon (UNITA

beacon), server and mobile device, which can be seen in figure 3.1.

The UNITA beacon and the mobile device represent the local part of the environment

and the server stands for the cloud side. Further, different communication technologies

get used, whereas the most important one is the ultrasonic communication between the

beacon and the mobile device. The two communication participants can exchange data

locally via this acoustic channel without being connected to the internet. To connect with

the internet via the server and to send data like messages or location, the UNITA beacon

establishes a WebSocket connection with the server. The WebSocket protocol was chosen,

as the connection needs to be bidirectional and constant as both server and beacon need

to request data from the other component. In addition, the mobile device needs to retrieve

24

3 UNITA - An Ultrasonic Beacon

Figure 3.1. The UNITA Beacon, the server and the mobile device with their corresponding
communication method.

information from the server, which happens via REST interface, as only the mobile device

has to request. On the server-side, a database is attached to the server for data saving

and retrieving purposes.

The UNITA beacon can be roughly structured into three layers: SoniTalk, the UNITA SDK

and the application, as seen in figure3.2. SoniTalk, as the base, handles the generating,

sending and receiving of ultrasonic signals. It further processes the outgoing and incoming

audio data and hands it over to the SDK. The UNITA SDK provides the functionality for

creating messages, including message data types and utils for processing them. Besides

that, the development kit is interpreting the incoming audio data as ultrasonic messages

and additionally includes controller for the receiving and sending process, location updates,

local message storage options, . The application on top uses then the functionality to

send and receive different messages, depending on the use case. This layer has an user

interface and direct user interaction.

3.3 Hardware Implementation

3.3.1 Requirements

The Unita beacon should be set up with low-cost components, to build a cheap beacon

for ultrasonic communication. Further, hardware components need to be easy to assem-

ble and quick to change. The single-board computer or microcontroller, which handles

the computing, should be strong enough to cope with digital signal processing methods

like Fast Fourier Transform (FFT), but as energy-saving as possible to minimize the power

consumption. On the software side, the computing element should be capable of running

25

3 UNITA - An Ultrasonic Beacon

Figure 3.2. Overview of the three layers, which are used in UNITA: SoniTalk, UNITA SDK
and an Application.

Android, as the SDK is needed to be written for Android. This limitation comes from the

SoniTalk dependency, as this ultrasonic communication protocol implemented for Android

in Java, is the first layer of the Unita SDK. Furthermore, Wi-Fi or equivalents like LoRaWAN

are an optional add, for enabling communication with the server, and could be either on-

board or equipable. Besides the processing board, a microphone and a loudspeaker were

needed. Both should be capable of receiving or sending ultrasonic frequencies and should

be rather cheap. Furthermore, depending on the board, an input for the microphone and

an output for the speaker needs to be added. If it is not available yet, a sound processing

chip or an external sound card could achieve that. In addition, a case for assembling all

hardware components needs to be found or crafted.

3.3.2 Challenges

First, the trade-off between computing power and energy consumption was first a chal-

lenge to handle. Microcontrollers have lesser computing power but consume less energy.

Whereas, single-board computers have much better and stronger processing units and

can run full operating systems on them. The disadvantage, which comes with using such

boards, is the higher energy consumption. That challenge was really important, as it needs

to handle real-time FFT, which is the basis for the whole audio processing. Another chal-

lenge was the sensitivity of ultrasonic signals of the loudspeakers and microphones. In

addition, the hurdle of signal strength appeared during the research phase. Further, finding

the minimum needed supply voltage was a smaller challenge appearing in the process of

testing hardware. Handling the input and output signal turned out, was not as easy as

thought, as sound cards with a sample rate of minimum 44.1kHz and compatibility to the

26

3 UNITA - An Ultrasonic Beacon

microcontroller or single-board computer are rather difficult to find. Additionally, the need

of running Android on it, has decreased the number of available boards strongly. Finally, a

ported and running Android OS version for the chosen board has to be found.

3.3.3 Hardware Selection

A first research on microcontrollers and single-board computers was pursued. The goal

was to get a list of components, which could do the processing. The searching started on

simple search requests via search engines. Further, going through maker forums and dig-

ital sound processing forums should give a more detailed perspective on available boards

and microcontrollers. Next, the specifications and features of several components were

collected and compared with each other. Another aspect was the price and the availability

of those computing devices. This was checked by using relevant shops on maker hard-

ware. Besides research on the computing board, suitable microphones and loudspeakers

were searched. This was happening in the same maker hardware relevant shops as for

the microcontrollers. Several components with different construction types were found

and bought. These types include piezo loudspeakers, miniature loudspeakers and piezo

buzzers of different sizes. The first research part led to the selection of a Raspberry Pi 3

B, which was used for further research on specialized hardware parts.

The gathered list of microphones and loudspeakers consists of eight boards and micro-

controllers. Those components were further rethought to determine the most suitable ones.

This detailed evaluation is described in the chapter 5. Furthermore, the found microcon-

trollers and single-board computers are summarized in table 3.1.

See table 3.2 for the full list microphones and speakers:

Next, a USB sound card as an audio interface has to be found, for the Raspberry Pi 3 B,

which was chosen for further tests. The Raspberry Pi 3 B has an audio output but lacks an

audio jack for the input of sound. The first sound card tested, was a 7-in-1 USB soundcard,

which was rather cheap and was found under several distributing companies with the same

hardware, but under another name. The USB sound card was plugged to the Raspberry

and audio jack elements were connect with a breadboard via simple wire pieces. One

microphone and one loudspeaker were soldered on wire pieces and also connected to

the breadboard. Next, a spectrogram application was installed and was used to test the

microphone input. The same happened for the loudspeaker output via an installed music

player app. Though the audio interface was recognized from the system and shown in

the Android terminal, input, as well as output, were not working. As a backup solution,

to exclude defective speakers and microphones, a commercial loudspeaker, as well as a

headset microphone, were plugged. This combination still did not work.

Another sound card has to be found. The next try was via the GPIO pins. After search-

ing in the official Raspberry Pi forum, a company creating audio shields was discovered.

A specialized signal processing shield for the Raspberry Pi 3 B was then bought and con-

27

3 UNITA - An Ultrasonic Beacon

Board Features Price in Euro
Arduino Yún Rev 2 5V, own Linux microprocessor ∼60,00

Tinkerforge
Brick und Brickletbasis
Java API Bindings

SPL 29,99
Master 29,99

WIFI 29,99
Power 19,99

BeagleBone Black

Audio über HDMI
BeagleBoneAudio Cape
(not available in onlineshop anymore)
Power cape

∼60,00
power cape 30,00

Banana Pi M2+ Android 40,00 – 50,00
Pandaboard 3 to 6 Watt ∼290,00

Cubieboard 4

Android
Lubuntu/Cubian

maximum of 5 V, 2,5 A and 12,5 W

one 3,7 V Li-ion battery needed

125,00

Raspberry Pi3+ Android 40,00
Teensy 3.6 Specialized on signal processing 30,00
Odroid Android ∼70,00

Table 3.1. List of microcontrollers and single-board computers to choose from.

Component name (all
from company Ekulit)

Component type

EMY-602N condenser microphone
EMY-625N condenser microphone
EMY-63M/P condenser microphone
EMY-63M condenser microphone
EMY-6027P/N-R-42(IP67) condenser microphone
EMY-9765P condenser microphone
MCE-101 condenser microphone
RMP-05 piezo loudspeaker
LSP-3015 piezo loudspeaker
BM 15B piezo buzzer
LSF-50M/N miniature loudspeaker
LSM-36M/B miniature loudspeaker
LSM-S19K miniature loudspeaker
LSF-40M/N/G miniature loudspeaker
LSF-23M/N/G miniature loudspeaker
LSM-57F miniature loudspeaker

Table 3.2. List of microphones and loudspeakers for further testing.

nected. On testing it, it was not working nor it was found via the terminal, though the correct

driver was part of the Raspberry Pi Lineage image. The search for a sound card went on

28

3 UNITA - An Ultrasonic Beacon

and resulted in two other USB interfaces from different companies. Whereas the first one

was not working at all, the second one was a well-working solution. Furthermore, several

microphones and loudspeakers were tried out and both, input and output side, showed,

that without amplifying the signal, the signal was not strong enough. Additional research

on small amplifiers was done and a set of amplifiers for a microphone and a loudspeaker

was found. Next step, those amplifiers were interposed between the speaker or micro-

phone and the respective output or input. On the output side, the amplifier worked well

and increased signal strength. In comparison, the microphone amplifier was too strong

and produced too much noise. This circumstance demands another amplifier, as the bad

signal-noise-ratio (SNR) was not acceptable.

Figure 3.3. The beacon case with first hardware parts assembled.

Besides the hardware research and tests, a beacon case was planned as soon as the

general hardware components were found. Figure 3.3) shows the current beacon case.

First, the decision was on the material of the beacon. The chosen material for the first

prototype was wood, as it should be hard to break and robust during testing. The outside

of the case has thicker material and two holes on the top for the microphone and the

loudspeaker. Inside the box, different layers with thinner wood were applied. The first

features the power supply, which is a power bank with 5V. The next level above is reserved

for the Raspberry Pi board, which owns the plugged USB sound card as well as audio

jacks with wire pieces. The top layer has a breadboard where the microphone and the

loudspeaker are plugged. A construction manual can be found in chapter 3.3.6.

29

3 UNITA - An Ultrasonic Beacon

3.3.4 Problems

Several problems occurred during researching and testing the hardware for the beacon.

First, finding a working USB audio interface was rather difficult. It should not be too cheap

as many similar cheap sound cards are from the same company. Those were rather bad

made and were not working with the Raspberry Pi. Further, the audio interface via the

GPIO pins sounded promising but was not compatible with Lineage/Android. Another huge

problem was the signal strength. The microphones and loudspeakers were not working

without increasing the amplitude but amplifying them too strong was having a negative

effect. The noise gets increased by the same level and makes it nearly impossible to

detect a signal. Finding a well working pre-soldered one with suitable settings was hard to

find. In addition, the perfect operating system to run applications on it, in combination with

the lifetime of a started application, its permissions and the setup itself, was a hurdle that

needed to be mastered.

3.3.5 Results of Hardware Selection

The hardware research and testing resulted in several valuable outputs. The chosen single-

board computer was the Raspberry Pi 3 B, because of the availability of the OS Android

for it, the cheap price, the strong enough processor and the on-board Wi-Fi functionality.

In combination with the USB sound card from Sabrent, which handles input and output

with a sufficient sampling rate of 44.1 kHz, the Raspberry can send and receive acoustic

signals. The Adafruit 2.5W class D audio amplifier was chosen because it is boosting the

loudspeaker signal without artifacts and is already pre-soldered for most of its parts. The

receiving part needs an amplifier too, which is described in the next paragraph. Further, a

powerbank as a voltage supply with 5V and 10.000 mAh is enough for running the beacon

and can be easily exchanged with a more powerful one. The finished wooden case then

holds all components. Parts of the hardware can be easily changed within the beacon.

The solution for the not working microphone amplifier was soldering an own pre-amplifier

with a set of transistors, resistors, capacitors and a prepared chip for soldering the com-

ponents on it. This amplifier is bigger and needs to be soldered, but allows a more fine-

grained amplifying process. A circuit diagram of it is shown in figure 3.4. This still creates

a problem, as the Bias voltage for the condenser microphones is too weak. The amplifier

itself works fine, as it was tested with a frequency generator connected to it. Using a direct

Bias voltage, led into overheated microphones. This is not solved yet and needs to be

addressed in future. Figure 3.5 shows the finished beacon. The manual for constructing

the beacon is described in the following chapter.

3.3.6 Hardware Setup of the UNITA Beacon

The following is a step by step description of how to setup the UNITA Beacon.

30

3 UNITA - An Ultrasonic Beacon

Figure 3.4. The self-soldered amplifier consisting of transistors, resistors ans capacitors.

Figure 3.5. All components assembled in the beacon case.

The construction starts with putting the SD-card into the Raspberry Pi 3 B and plugging

the USB cable for power. The USB soundcard is then plugged to one of the four USB

ports. Next, the two terminal blocks are used to connect the soundcard and the micro-

phone/loudspeaker. The used terminal blocks have on the one side a 3.5 mm audio jack

plug and on the other two 2-pole female plugs for wire cables. The two terminal blocks

get plugged into the USB sound card and for microphone input and the speaker output.

In each of the two terminal blocks, two wire pieces for positive and negative charge get

pinned. In addition, the first and the third GPIO pin of the Raspberry Pi, respective 5V and

31

3 UNITA - An Ultrasonic Beacon

Figure 3.6. The first components including power supply, the Raspberry Pi, the
soundcard, and the wire cables for the next components.

ground, get equipped with jumper cables. This will be the power supply for the amplifiers.

See figure 3.6 for the circuit diagram and the assembled parts can be seen in figure 3.7.

Figure 3.7. The powerbank, the Raspberry Pi, the soundcard, and the wire cables
assembled in the beacon.

32

3 UNITA - An Ultrasonic Beacon

Next step, the six wire cables from the Raspberry Pi are plugged into the breadboard,

seen in figure 3.8 It starts with connecting the two GPIO pins for power into the horizontally

connected breadboard holes. Every components which needs energy can access it then.

Figure 3.8. The microphone, the loudspeaker and the amplifier wired on the breadboard.

Starting with the AMP1 for the loudspeaker, the two cables from the microphone terminal

block get connected to the A+ and A- port of the amplifier. Next step, the positive charge

gets plugged on the Vin port of the amplifier and the ground and GND ports get connected.

The loudspeaker is connected then via the two output pins, Out+ and Out-. On the micro-

phone side it is similar and starts with connecting the power with the outer two ports ’+’

and ’-’ of the ampllifier AMP2. The two wire cables from the terminal block plugged to the

soundcard, are then connected to the two output ports as the microphone is plugged to the

two input ports. Figure 3.9 shows every component assembled in the beacon.

3.4 Software Implementation

3.4.1 Operating System

Further, a version of Lineage, which is an open source version of Android, was downloaded

and an image put on the Raspberry. On the Lineage image side, it was discovered that

the OS version 14 runs more stable on a Raspberry Pi 3 B than the version 15. Those

were the two latest versions of KonstaKANG1 corresponding to Android 7.1 (Lineage 14)

and Android 8 (Lineage 15). Besides Lineage, an alternative version with Android Things

is described in the construction manual. Both options work, but have different demands on

launching and running them, described in detail at the end of subchapter 4.3.1.

1Lineage images for Raspberry Pi 3 from KonstaKANG https://konstakang.com/devices/rpi3/

33

3 UNITA - An Ultrasonic Beacon

Figure 3.9. The amplifiers, the wiring and the input/output component shown within the
beacon case.

3.4.2 UNITA SDK - Client-side

3.4.2.1 Requirements

The main goal of the UNITA SDK was to set up a development basis for other developers,

which is easy to use and provides the base functionality for creating an own ultrasonic

beacon or client application. Developers do not need to implement the lowest level, repre-

sented by the ultrasonic communication protocol SoniTalk, by themselves. The first stack

with tasks like creating audio messages, handling the error check or the audio resource

release. It needs to offer sender and receiver objects, which interpret the abstract SoniTalk

messages. This message interpretation demands a basic structure of message objects,

which deliver different information. Further, local storage and database handling should

be covered within the SDK, so developers do not need to care about that. Besides that,

coping with other communication technologies to communicate with devices like a server,

need to be in the SDK. The main functionalities need to be split into controller classes with

additional utility classes.

3.4.2.2 Software Architecture

UNITA SDK is split into three parts: the message classes, controller classes and peer

classes. Figure 3.10 shows that there are three peer types, five message types and six

controller. Further, there utility classes as a support, which are listed in the appendix A,

34

3 UNITA - An Ultrasonic Beacon

Figure 3.10. Class diagram of the main classes in UNITA. Description in the text.

beside more detailed listings of every class. Further, table 3.3 shows an overview of the

features of each controller class.

Class Functionality

ReceiveController
creates ultrasonic receiver to start receiving,
handles checking of receivied message type
provides interface for received messages

SendController
creates a \texttt{SoniTalkMultiMessage} object,
which is described in the following section
handles sending and resending of messages

SocketController

opens socket connection to the server
handles login, saving messages and
getting URLs with the server
sends location to the server
periodically on demand from the server

LocationController gets current location of the beacon

CommandController
loads local commands of an implemented application
provides a list with all avaible commands

LocalMessageDatabase

operates a local MongoDB database
saves messages locally
retrieves local messages
keeps database open to any kind of message

Table 3.3. List of all implemented controllers and their corresponding functionality.

As mentioned in chapter 3.2 and shown in figure 3.2, the SoniTalk protocol was included

for handling the ultrasonic communication. In the SDK, a message is represented by the

UnitaMessage class which consists of UnitaHeader object and a UnitaMessageBody

object. The structure of the base UnitaMessage is important, as every subclass, in appli-

cations using the SDK, is inheriting from Further, it has two peer objects representing the

sender and receiver and a headerMessageCode, which states the message type and is

used for decoding a received message. With the headerMessageCode value and the two

peers, the UnitaHeader is created. This leads to a fixed header size of three bytes, as

each attribute takes one byte and is therefore limited to 256 values at the moment. In ad-

35

3 UNITA - An Ultrasonic Beacon

dition, the UnitaMessageBody object just includes the raw message array. Based on this

UnitaMessage, five types of more concrete messages were established, inherited from the

base class and given a unique headerMessageCode. Each of those message types stands

for a specific ultrasonic communication type. Table 3.4 shows the message types with their

main function.

Message type Function
TextMessage handling private and public messages
UrlMessage triggering specific functions on the beacon
CommandMessage handling dynamic REST calls on the client to the server
TokenMessage handling tokens for different purposes
StatusMessage handling simple status responses

Table 3.4. List of message types and their corresponding functionality.

Inherited message types can be extended, like the TextMessage, which was extended

by a communicationPartner attribute. Those extensions will be handled as part of the

message body when converting the TextMessage back to a basic UnitaMessage. New

message types can be created based on the base UnitaMessage in a client application,

but are still interpreted as UnitaMessages in the SDK.

Next, three peer types were implemented to address all common receivers and senders:

• Beacon with dynamic name and id

• User with dynamic name and id

• Broadcast with only id, which is fixed to 1

3.4.2.3 SoniTalk Extension for Longer Messages

As previously mentioned, the open source ultrasonic communication protocol SoniTalk was

chosen as the first layer of UNITA. This part handles the hardware resources and the gener-

ating, sending and receiving of ultrasonic signals. As soon as the ultrasonic layer receives

a correct message or the UNITA SDK wants to send a message, the two layers communi-

cate with each other. Besides the ultrasonic part, the permission system of SoniTalk was

taken over to the UNITA SDK and needs to be implemented and checked. This permission

is checking on sending and receiving ultrasonic signals.

Further, UNITA needs to send longer messages then SoniTalk previously defined. There-

fore, the open source protocol needed to be extended. This happened in the form of a

SoniTalkMultiMessage in addition to the existing SoniTalkMessage. This new class just

needs the raw byte array message, seen in the listing 3.1.

Listing 3.1. SoniTalkMultiMessage constructor

1 public SoniTalkMult iMessage (byte [] message)

36

3 UNITA - An Ultrasonic Beacon

Further, the single SoniTalkMessage got extended by a header on the SoniTalk level.

The header consists of:

• message-id

• packet-id

• number of packets overall

The size of the header is fixed, seen in listing 7.1. For every header entry one byte is

available, which allows the use of the values 0 to 255. Next, the SoniTalkSender gets

extended by a sending function for SoniTalkMultiMessages. Depending on the length of

the message, the number of packets get calculated and AudioTracks get created within

a SoniTalkMessage, see listing 7.2 and listing 7.6. On calculating the number of packets,

the header has to be included into the calculation for every single SoniTalkMessage. A

SoniTalkMultiMessage is split into several SoniTalkMessages by this process, ready to

send. See listing 7.4 and listing 7.5 for the detailed split.

On the receiving side, correct received ultrasonic messages get converted back into a

SoniTalkMessages again. Depending on the value for number of packets, it will either

be directly forwarded to the UNITA SDK layer, if it is just one packet, or collected de-

pending on the message-id. This stored SoniTalkMessages will be concatenated to a

SoniTalkMultiMessage object again, as soon as all packets were received.

3.4.3 Used Protocols

3.4.3.1 WebSockets

The WebSocket protocol uses a signal TCP connection for creating a bidirectional com-

munication channel. An existing bidirectional polling HTTP infrastructure, which was used

previously, can be used for the WebSocket protocol as it can use the same HTTP ports

80 and 443. Further, it consists of two parts: a handshake and the data transfer. First,

the client and server have to fulfill a handshake. On a successful one, the data transfer

starts and "messages" can be sent in both directions. The WebSocket protocol is concep-

tually seen, a layer on top of TCP, which provides a web origin-based security model for

browsers, adds a naming mechanism and addressing for multiple service support. Further-

more, a framing mechanism is attached on top of TCP without a length limit and adds a

closing handshake to securely close the socket connection (Fette and Melnikov, 2011).

3.4.3.2 REST

Representational State Transfer (REST) stands for an architectural style of a distributed

hypermedia system with software engineering principles and interaction constraints. REST

uses a client-server style, which is creating the possibility of portability over multiple plat-

forms and improves scalability. Further, it is stateless and therefore a client needs to save

37

3 UNITA - An Ultrasonic Beacon

information about the server in a session state. On improving the network efficiency, a

cache is implemented on the client-side to store information within responses from a server.

In addition, REST has a uniform interface that is decoupled from the service provided. Fur-

thermore, REST builds upon a layered system, where every layer has a restricted view on

only the next layer they are interacting with. Finally, code can be downloaded on demand

in a form of applets or scripts via REST. Whole features can be requested, but it reduces

visibility, which makes it an optional constraint on REST (Fielding, 2000).

3.4.3.3 Functionality

The following section shows important parts of the functions of the SDK, which are needed

to get and send messages. Starting with the receiver and sender, and followed by the

socket functionality and a brief look on the utility functions.

The ReceiveController is a Singleton, as the SoniTalk protocol, on which UNITA is

based of, has a limitation of only one receiver at the same time. The initialization can be

seen in listing 7.8. The controller starts then receiving by creating a SoniTalkDecoder

object and executing the starting function of it. Further, the interface for receiving the by

SoniTalk forwarded messages, was implemented, which can be seen in listing 7.9. Either

correct messages or errors will be received. On correct messages, the ReceiveController

checks the message code in the header of the received message to identify the message

type and convert the UnitaMessage to the new type, see listing 7.10. An interface was im-

plemented to forward the converted message to the application layer, as seen in listing 3.2

and 7.11.

Listing 3.2. Creation of message listeners for all implemented message types.

1 public i n t e r f a c e BeaconListener {

2 void onUnitaMessageReceived (UnitaMessage receivedMessage) ;

3 void onTextMessageReceived (TextMessage receivedMessage) ;

4 void onCommandMessageReceived (CommandMessage receivedMessage) ;

5 void onTokenMessageReceived (TokenMessage receivedMessage) ;

6 void onUrlMessageReceived (UrlMessage receivedMessage) ;

7 void onStatusMessageReceived (StatusMessage statusMessage) ;

8 void onUnitaMessageError (S t r i n g errorMessage) ;

9 }

The SendController implements the functionality for creating messages and convert-

ing the UnitaMessages into SoniTalkMultiMessages, seen in listing 7.12. Next, a sep-

arate thread is started for the sending process. Depending on the number of packets of

the SoniTalkMultiMessage, the sender emits the same amount of messages. Further, it

has the possibility to resend messages, if they are not received by someone. The sending

process in detail can be found in listing 7.13.

38

3 UNITA - An Ultrasonic Beacon

The SocketController creates a socket connection to the specified server. Besides

listeners for standard events like connect and disconnect, the login, the URL responses

and the location retrieval got listeners implemented. These listeners get triggered by the

server either automatic by the server or get activated by sending a JSON object to the

server. This gives the server the possibility to check the location of the beacons via the

LocationController. An example can be seen in listing 7.14.

Additionally, to notify the layer above, four listeners were implemented, see listing 3.3.

Listing 3.3. Several listeners for socket events.

1 public i n t e r f a c e SocketL is tener {

2 void onSendMessageResponse (JSONObject messageResponse) ;

3

4 void onGetUrlForCommandGetAllMessagesResult (JSONObject

↪→ urlResponse , JSONObject senderResponse) ;

5

6 void onGetUrlForCommandgetAllBroadcastMessages (JSONObject

↪→ urlResponse , JSONObject senderResponse) ;

7

8 void onGetUrlForCommandgetAllMessagesFromContact (JSONObject

↪→ urlResponse , JSONObject senderResponse) ;

9 }

In addition, to the controllers, utility functionalities were added to support the main

functions. The main utility is the MessageUtils, which handles the conversion of dif-

ferent message types with the base UnitaMessage and with the SoniTalkMessage and

SoniTalkMultiMessage form the lowest layer, seen in listing 7.16. Besides the utility for

the messages, the LoginUtils handles the saving and getting of logged-in beacons, for

retrieving data on every occasion, seen in listing 7.15.

3.4.3.4 Classification in the OSI-Model

UNITA can be categorized into the OSI-model. Starting with layer one, the physical layer,

which is represented by the ultrasonic sending via the loudspeaker and receiving via the

microphone. The encoding protocol on this layer is done via the SoniTalk protocol. The

second layer, the data link layer, is performed through ordering the bits in a kind of barcode

over several frequencies. Further, adding a cyclic redundancy check (CRC) is happening

on this layer, which makes a frame out of one packet. Next, the third layer, the network

layer, is represented through the list of connected beacons, which serves as an address

table. In addition, it adds the sender and receiver data in form of the SoniTalkHeader

and splits the multi messages (segments) into SoniTalkMessages (packets). The fourth

layer checks the CRC at the ReceiveController of UNITA SDK, whereas the resending

39

3 UNITA - An Ultrasonic Beacon

of segments happens on the level of the SendController. The fifth layer, the session

layer, is authenticating through the login in the UNITA SDK. The sixth and seventh layer,

presentation and application layer, are fulfilled by the use case application on top of the

UNITA SDK.

3.4.3.5 Challenges and Remarks

The biggest challenge was keeping the SDK as atomic as possible to stay independent

and flexible. Though, as many common functions as needed should be in the development

kit. The main problem during development was to decide, which features should be part

of the SDK. Often, components, which fit more into the application part, were already

implemented in the SDK level and had to be removed again. Due to the low data rate,

problems in deciding for the header element appeared. Creating a fixed header on the

SoniTalk extension, was on the one side helpful as it is quite slim, but limited the number

of bytes, which was still marking a problem. Furthermore, the decision, on which message

types for which purpose need to be included, was rather difficult. Additionally, the save

of local messages was quite a hurdle at the beginning, because several options were

available, like saving it on a file, saving it inside the app as a SharedPreference or using a

full-featured local database.

3.4.4 UNITA Server - Server-side

3.4.4.1 Requirements

To get access to the internet and exchange and maintain data of different beacons, UNITA

needed a kind of backend. This backend needs to fulfill several requirements:

• It should offer a platform for maintaining application and beacons.

• The information processing should take place on the backend.

• Messages should be uploaded.

• Messages should be further stored.

• Stored messages should be retrieved.

• Continuous location tracking should be possible.

• The tracking of active beacons should be implemented.

• The login of beacons and clients should be handled by the backend.

• Beacons should be shown on a kind of map.

40

3 UNITA - An Ultrasonic Beacon

3.4.4.2 Structure

Figure 3.11. Class diagram of the UNITA server with the six packages, which contain the
corresponding TypeScript-files.

The programming base of the server was a Node.js application with the extension Ex-

press.js written in TypeScript and JavaScript. Express.js provides a simple REST interface

and can be easily used to set up all endpoints of the interface. The server was split into

six packages, as seen in figure 3.11: config, controller, database, models,websockets and

www.

The config package consists of the initialization of the server in the server.ts file

and is responsible for the REST interface. Further, it includes the names of the REST

interface endpoints in the restInterfaceConfig.ts. Next, the controller package keeps

the logic of the server. It handles the location retrieval on the beacons current position

in the locationController. Besides that, messages get saved to the database by the

messageController and messageTypeController. Then they get retrieved and the mes-

sage types get stored.

Additionally, the peerController and the peerTypeController keep track of the peers,

like beacon and users, and its types. Further, the peerController takes over the login

of beacons and clients. Next, the database package consists of a connection.ts file,

which handles the connect functionality to the database, and the dataFactory.ts, which

initializes the database with the static data on the start. The websockets package includes

the socket.ts, which is implementing the socket listeners and emit functions for all socket

events like login or save message to database. Last, the www package contains the map,

which is split into a html-file and a JavaScript-file, for visualization.

41

3 UNITA - An Ultrasonic Beacon

3.4.4.3 Database

All peers and several messages should be saved on the server-side. Therefore, MongoDB

was chosen to get a mostly dynamic database infrastructure. MongoDB operates as a

NoSQL database and uses a document-based way of saving data. Further, this allows

UNITA to save messages from several applications, without creating new tables, with its

own structures. UNITA messages have a basic structure defined in the SDK, which is kept

on the server-side as mongoose models. Mongoose is a plugin for Node.js to simplify the

work with MongoDB. Those models were created for messages, message types, locations,

peers, peer types and socket connections. An example of one model is seen in listing 3.4,

describing the message object. It shows the different attributes of the model like sender,

receiver or message, and its corresponding type for the database. Further, the field unique

says, if the value of the attribute needs to be unique like for example an identification

number. Additional information can be stored as a separate field, shown in the following

subchapter.

Listing 3.4. Database model example scheme.

1 const messageSchema : Schema = new mongoose . Schema ({

2 headerMessageCode : {

3 type : Number ,

4 unique : false ,

5 } ,

6 sender : {

7 type : Number ,

8 unique : false ,

9 } ,

10 rece i ve r : {

11 type : Number ,

12 unique : false ,

13 } ,

14 communicat ionPartner : {

15 type : Number ,

16 unique : false ,

17 } ,

18 message : {

19 type : S t r ing ,

20 unique : false ,

21 } ,

22 messageRaw : {

23 type : Array ,

24 unique : false ,

42

3 UNITA - An Ultrasonic Beacon

25 } ,

26 timestamp : {

27 type : Date ,

28 defaul t : Date . now ,

29 } ,

30 } ,

31 {

32 s t r i c t : fa lse

33 }) ;

Before using MongoDB it needs to be connected, which looks like in listing 7.17 in the

connection.ts file. On a correct connection, the predefined static data is created through

a data factory object. This includes peer types, message types and fixed peers like the

broadcast address.

43

3 UNITA - An Ultrasonic Beacon

3.4.4.4 Functionality

Figure 3.12. Activity diagram of the server initialization.

The server.ts starts with creating a server object of Express.js, seen in figure 3.12.

Next, a instance of the database is created for later. Further, a socket object is built and

the controller, which are used in the server.ts, get initialized, see listing 7.18 for details.

Afterwards, the connection to the database happens via the previously created database

instance, as seen in listing 7.19. Last, all endpoints of the REST interface get created,

example in listing 7.20 and 7.21. The endpoint addresses are either static, for fixed access

points, or dynamic through taking the endpoint name from the restInterfaceConfig.ts

file. These dynamic endpoint addresses are used for the clients, which have to ask for the

specific name via a beacon. This way, the endpoint name can be changed easily.

44

3 UNITA - An Ultrasonic Beacon

Figure 3.13. Activity diagram of an endpoint call for retrieving messages.

On requesting to a REST interface for messages, the corresponding endpoint gets trig-

gered, as seen in figure 3.13. Next, a method of a controller gets called, for example the

messageController, an example seen in listing 7.22 The controller calls then the find()-

function on the database and gets messages returned. These are returned to the REST

interface. From there, they are returned to the user. Another example is the saving of a

message to the database, shown in listing 7.23. To stay independent from the message

types and different applications, every value, which is not a key value, is saved in the field

additionalData.

The peerController keeps track of the login functionality. Both client and beacon login,

are handled inside this controller. If the peer exists, the peer can get logged in, otherwise

a new peer objects gets created in the database, seen in listing 7.24. Further, the socket.ts

has all WebSocket events implemented and handles the input and output via this channel.

Examples are in listing 7.26 and 7.27. All connection and data exchange with beacons

happens through the socket implementation. Examples of integrated socket endpoints are:

saving a message on the server, getting a URL for the REST interface call of the client or

sending a location check. For example, the "sendMessage" socket event is emitted from

the beacon by calling "socket.emit(’sendMessage’, messageData)" and received on

45

3 UNITA - An Ultrasonic Beacon

the servers event listener seen in listing 3.5. Next, a controller is triggered and process

the provided data or retrieves data from the server depending on the request. Last, a new

socket event with the new data gets emitted and the listener on the beacon side receives

the information.

Listing 3.5. Socket listener for sending messages.

1 socket . on (" sendMessage " , (message) => {

2 th is . messageControl ler . saveMessageToDB (message) . then ((

↪→ savedMessage) => {

3 socket . emit (" sendMessageResult " , savedMessage) ;

4 }) ;

5 }) ;

3.4.4.5 Map

For keeping a good overview on how many active beacons are available, a map was inte-

grated into the server. It should show further information and the position where the beacon

is located. This is realized by a simple HTML file with a script written in JavaScript behind it.

Further, this script communicates through WebSockets and retrieves the data from there.

The used map source is OpenStreetMap and active beacons are shown as markers with

popups containing additional data. First, active beacons are identified by taking all open

socket connections and caching their IDs. Next, those IDs are used to request all con-

nected location points in the database. This amount of position data is then filtered by the

timestamp for the last added entry. These entries get forwarded to the map and represent

the markers, as seen in figure 3.14.

Figure 3.14. One beacon placed at the entrance of the university.

46

3 UNITA - An Ultrasonic Beacon

3.4.4.6 Challenges and Remarks

The server needed to store different message types with different sizes of attributes, with-

out creating an overhead for handling each type in a different way. Besides what to store,

the question was in which form and structure and where to save it, to keep the server and

database independent and easy to expand. Further, how to implement the interfaces for

the beacon and the clients was another hurdle to take, because it needed to be generic

and quickly changeable. Additionally, how to provide the endpoints to clients to keep them

as independent and flexible as possible, was another challenge. The main problem was

finding a way to add additional data for each database entry, which was solved by check-

ing the incoming data for all key values of the predefined model. Object attributes not

included, were collected and stored as a separate database field. Further, keeping the

REST endpoints dynamic was a bigger question at the beginning. In addition, tracking

active beacons and deleting them without getting a disconnect from them, was an issue

during development.

47

4 Proof-Of-Concept App "SocialWall"

The following chapter includes the process of creating use cases, choosing the main use

case and implementing the proof-of-concept app based on the chosen use case. Further,

other possible use cases get described.

4.1 Use Case Definition

A major goal for UNITA was implementing a use case as a proof-of-concept application.

In the beginning, several use cases were conceptualized, to get an overview of what func-

tionality the UNITA SDK should contain. First, four topics were defined, which give the

basis for the following use case brainstorming. These topics include home automation,

data sharing, security, and gaming, further described in the following subchapter. Further,

twelve use cases were gathered and briefly described, whereas one was chosen to be

the proof-of-concept application. This application gets a separate app for the beacon and

client.

To get a good view of possible areas of application, four superior topics were defined

more precisely. The areas were taken in a balanced way to get more different use cases.

Starting with data sharing is probably the first-mentioned when talking about ultrasonic

communication. This contains the simple sending and receiving of non-sensitive data in

terms of extended information purposes. Information can be left or retrieved at a specific

point. Next, security represents an own topic, consisting of areas like authentication and

cryptography. Ultrasound communication stands here for sending sensitive data and get-

ting access to something or somewhere. Further, gaming is a topic where ultrasound can

be used as either the interaction method or the game base itself. Last, an important field

is the area of home automation. Here ultrasonic communication works as an extension of

sensors or as a network between devices.

The ten created use cases withiout the main use case are:

• Information exchange for fair booths - A beacon would serve as an extension for fair

booths. Users can collect information about, whoever is running the booth, just by

interacting with the beacon. A general query can be sent and the beacon is respond-

ing with information and further interaction possibilities. It starts a conversation at the

ultrasonic level and is built like a dialog tree.

48

4 Proof-Of-Concept App "SocialWall"

• Additional information for museums exhibits - Items of an exhibition in a museum

could be equipped with ultrasonic beacons. Those would send out the same se-

quence of symbols all the time and trigger something in the client application. In

this case, the client would only listen to the beacon and gets more information by

unlocking new parts of the application through ultrasound.

• Broadcast of important information in public areas - Important information can be

broadcasted for people. Ultrasonic beacons operate as information antennas and

forward data in a continuous inaudible acoustic stream. The client application then

notifies the users and shows them what happened.

• Unlocking of doors for entrance - Ultrasonic beacons can be used for unlocking doors

in a secure way. Via ultrasound, a special identification number is exchanged be-

tween the client and beacon to give the user entrance somewhere. This process

is kept even more secure by decreasing the volume of the message and therefore,

reducing the distance for possible attacks.

• Ultrasonic tickets for events - Instead of using physical paper or digital file-based

tickets, a specific ultrasonic sequence can be used as authentication. The audio

message gets triggered by the ticket check beacon and sends as a response the

signal to authenticate the user. The acoustic ticket is kept secret until the process at

the beacon and prevents thereby illegal copies.

• Mobile payment - Mobile payment can be achieved by using ultrasound. Multi-factor

authentication through an acoustic token is a way of getting an additional security

channel. In combination with an existing method, like pin code, another method

gets established. A one-time password is created on the payment server, is then

forwarded to the application of the client and is emitted as an ultrasonic message for

the payment beacon. The ultrasonic beacon then receives the signal and decodes it

with a further comparison of the original password on the server.

• Geo-caching - A playful approach for ultrasonic beacons is the game geo-caching.

The user needs to find tags and has to scan them to get points or leave messages

for other people. These tags get represented by ultrasonic beacons which the user

needs to find by listening to them or triggering them via the client. This depends

on the way the beacon behaves, either active or passive. The active option uses

continuous messages which the user needs to scan with the client. The passive

would require triggering through signals from the client application.

• Ultrasonic beacon as a gaming console - An ultrasonic beacon can represent a gam-

ing console interface. It reacts to different ultrasonic messages and executes the

respective command on the game behind displayed somewhere. The client applica-

tion stands for the controller and sends user inputs to the beacon. Several different

49

4 Proof-Of-Concept App "SocialWall"

games, which are not time-dependent, as the communication needs time, and are

designed for single-user inputs, can be developed.

• Home automation - Home automation can be supported by ultrasonic beacons. Smart

sensors can be equipped with a beacon and send an ultrasound signal to the device

of the user as soon as a specific threshold is reached. For example, a humidity sen-

sor of a plant sends a message if the moisture is reaching a specific low level. The

client application then receives this signal and displays a message for watering the

plant.

• Communication between beacons on specific conditions - A machine-to-machine

communication (M2M), more precisely a beacon-to-beacon communication, is a pos-

sible use case for ultrasonic beacons. A network of different sensors and home

automation devices can be built by using the beacons. If a predefined condition is

fulfilled a specific action will be executed. Those events can be implemented before,

including various actions for different available components.

The eleventh use case was chosen as the main use case, the ultrasonic blackboard was

chosen and called SocialWall, which is further described in the next section.

4.2 Main Use Case - SocialWall

From the previously described use cases, the SocialWall offers a broad implementation of

the UNITA SDK features and further, a good way for testing it with users. It uses most of

the communication features and protocols, which makes it even better for proof-of-concept.

SocialWall needs bidirectional ultrasonic communication, which means both the beacon

and client need to send and receive signals. The application uses the pairing functionality

in combination with status messages. It creates two new inherited message types and

uses all of the by the SDK provided message types. Besides that, peers play a role in

the application as well as the private and public in the shape of text messages and a local

database storage. For testing, SocialWall further provides a common interaction model

which is already known by users, as they are accustomed to messaging apps. This gives

the possibility of getting better data about the ultrasonic communication process, while

not focusing on understanding the application itself. In addition, suggestions about the

application interface can be gathered.

SocialWall belongs to the data sharing topic and is, in general, an ultrasonic blackboard.

The idea is to leave and retrieve messages with a smartphone. This only works on-location

at the blackboard, which is represented by the developed ultrasonic beacon. A user can

register and log in with the client application and then needs to pair with the black board via

ultrasonic pairing messages. Further, the user can write either private or public messages,

which differ in this respect by the storage method. As the blackboard has an internet

50

4 Proof-Of-Concept App "SocialWall"

connection, public messages get stored online, whereas the private ones are directly saved

on the beacon. Using ultrasonic commands, the user can receive left messages. Though

a user can only get the belonging private messages, all private messages as they are

shared by the other users. For sending private messages, a user has to add contacts to

the contact list. This application/blackboard can be used in different ways. It could serve

as a guestbook, as a kind of mailbox or as a replacement for a physical blackboard.

4.3 Implementation

The following part describes the implementation of the beacon side and the client side

application. Figure 4.1 shows the process of SocialWall. The continuous lines represent

ultrasonic communication, wheareas the dashed arrows are for the Internet connection and

the dotted lines stand for internal communication. Starting with User A sending a private

message to User B. This message is then saved on the local beacon database as it needs

to be at a private level. User B asks then for the latest private message of User A from the

beacon. The beacon retrieves this message from the local database and returns it to the

user. The same happens the other way round, as User B sends a private message for User

A and User A retrieves this message. The private communication is shown as blue arrows.

The green arrows represent the public messages, shown with User C, who sends a private

message to the beacon, which is then sent to the server via the Internet. The server further

saves this message on its database. User C then checks for all available messages and

the beacon retrieves them from the server and its database and returns it to the user.

4.3.1 Implementation Beacon

The beacon application is written in Java and implemented for Android like the UNITA SDK.

Figure 4.2 shows the first steps of the initialization of the beacon application. The pro-

cess starts first with the creation of the socket connection for further communication with a

server. Next, the beacon logs in on the connected server. Further, the ReceiveController

gets initialized, beside the LocationController for providing the current location of the

beacon. Last, the SendController for emitting ultrasonic messages. See listing 7.28 for

source code details.

In addition, listeners for the responses of the server, respectively the SocketController

get implemented. The listing 7.29 shows an example of a listener in the wake of the login.

Further, the response of the login is saved on the beacon. Besides the login, listeners for

all message types are implemented, to retrieve forwarded messages from the lower layer,

UNITA SDK. An example of a message type listener is shown in listing 7.30. Additionally,

every important socket event gets listener from the SocketController, see listing 7.31 as

an example. Besides that, the settings functionality with using presets and changing them,

51

4 Proof-Of-Concept App "SocialWall"

Figure 4.1. Use case visualization of SocialWall, with all communication possibilities and
interacting components.

is implemented in the MainActivity as well as all listeners for the implemented SoniTalk

data-over-sound permission.

Every sending and receiving process is handled via the Routines class. What happens

on and with which message type is described there. Examples are shown in listing 7.32.

For more flexibility, SocialWall inherited two new message types. The PairingMessage

gets inherited directly from the UnitaMessage class. This message type is used for the

pairing process of a client with the beacon and does not implement new attributes. The

second new type is inherited from the TextMessage of UNITA SDK and introduces the

new attribute isPublic to check between private and public messages. In addition, status

codes, service constants and several commands are created.

There are two ways to start the beacon. The first would be with a Lineage image on

the Raspberry Pi. Starting the Raspberry Pi a screen needs to be connected. After the

boot, the Wi-Fi connection needs to be established like with a normal Android device. Next

the application will be uploaded to the device for example via the Internet connection an

a cloud service of your choice. After installation, the app can be started, all permission

needs to be accepted and then it should already run.

52

4 Proof-Of-Concept App "SocialWall"

Figure 4.2. Initialization of the beacon.

The second way is using the Android Things console. After logging in with a Google

account, a new project is added. Besides entering the name and description of the appli-

cation, the device model has to be chosen, which is Raspberry Pi in the case of SocialWall.

Tapping on the model, forwards to the build and release page, where a new application can

be added via the new button. Here, the option "Start from scratch" is used and opens a

new menu for entering the application data. First, a build configuration name needs to be

written and then the newest Android Things version (1.0.15.5796897) is chosen. Further,

the built apk-file of the beacon application has to be uploaded. Before building, the mani-

fest of the Android app needs modifications to open the launch activity in the correct way,

seen in listing 4.1 with the two new lines and the commented line of code for the previous

described build version.

Listing 4.1. Changes of manifest file for launch activity.

1 <category andro id : name=" andro id . i n t e n t . category .HOME" / >

2 <category andro id : name=" andro id . i n t e n t . category .DEFAULT" / >

In addition to work with Android Things, the corresponding library needs to be included

as described in the GitHub repository1. The manifest needs two further entry, which de-

1Native library for Android Things https://github.com/androidthings/native-libandroidthings

53

4 Proof-Of-Concept App "SocialWall"

clares the usage of the Android Things library and the accompanying permissions. (see

listing 4.2)

Listing 4.2. Permissions and usage of Android Things library.

1 <uses−permiss ion android : name="com. google . andro id . t h ings .

↪→ permiss ion . USE_PERIPHERAL_IO" / >

2 <uses−permiss ion android : name="com. google . andro id . t h ings .

↪→ permiss ion .MANAGE_INPUT_DRIVERS" / >

3

4 <uses− l i b r a r y andro id : name="com. google . andro id . t h ings "

5 android : requ i red=" f a l s e "

6 t o o l s : rep lace=" andro id : requ i red " / >

After the apk upload, all permissions have to be accepted and no changes to the hard-

ware tab and to the partition tab are needed. The build is available in the overview and can

be downloaded as an image to be flashed on the SD card of the Raspberry Pi. Further-

more, after starting the Raspberry Pi with the application, it needs to be connected with a

router to connect to it from the computer via the Android Things setup utility tool 2. Running

it, the setup of the Wi-Fi can be achieved and the device will be found via the tool. Then, it

can be used.

4.3.2 Implementation Client

The client consists of five activities and four fragments.

• Activity:

– BaseActivity

– LoginActivity

– ContactActivity

– MainActivity

– PairedBeaconActivity

• Fragments:

– PairingFragment

– MessagesFragment

– SendFragment

– SettingsFragment

2Download of setup utility tool https://partner.android.com/things/console/u/0/#/tools

54

4 Proof-Of-Concept App "SocialWall"

The BaseActivity implements the options menu and the action bar items. The re-

maining four activities inherit from the basis one. Starting with the LoginActivity, users

can enter a name to login via REST and a correct response from the server leads to the

MainActivity. This activity contains the four fragments, which are described in the next

paragraph. Further, the contacts and paired beacons have their own activity, to show them

in a list and to allow them to remove them again.

Figure 4.3. Screenshot of client application of the pairing fragment.

The four fragments handle pairing, sending, messaging and keeping the settings. The

first fragment is responsible for the pairing process and can be seen in figure 4.3. It con-

tains a button for starting the process and shows additionally the current status of it.

55

4 Proof-Of-Concept App "SocialWall"

Figure 4.4. Screenshot of client application of the messages fragment.

Further, messaging fragment shows all retrieved messages in a list. In addition, com-

mands for retrieving messages at a beacon are offered, shown in listing 4.4. Next, the

sending fragment follows and gives the user the opportunity to send private an public

textmessages, shown in figure 4.5. On the client, the corresponding paired beacon, which

the message should get, can be chosen and the message text can be added. By switching

the radio button, an option for a communication partner is enabled, if a private message

wanted to be sent. The source code example can be found in listing 7.34.

56

4 Proof-Of-Concept App "SocialWall"

Figure 4.5. Screenshot of client application of the sending fragment.

The fourth fragment keeps the settings handling. Presets are offered and parameters for

receiving and sending messages can be changed individually. As the user has to commu-

nicate with the server via a REST interface, two classes were implemented to enable this.

The interface SocialWallAPI handles the endpoints which can be addressed, see listing

7.35, and the RESTController creates a REST instance for connection via the external

library Retrofit.

57

5 Evaluation

The evaluation happened in the form of a user study based testing with the proof-of-concept

application SocialWall. The goal was to get to know the user acceptance and usability of

ultrasonic communication, as well as an evaluation of the use case itself.

5.1 User Study

More information about the possible usage of ultrasonic beacons needed to be gathered.

This happens through testing the proof-of-concept application and asking further question

about acceptance and trust on ultrasound. The following sections show the aims, the study

itself, the research questions, and the tasks which need to be performed.

5.1.1 Aims of the User Study

On the one hand, the application SocialWall should be tested on how intuitive the smart-

phone client is and what improvements can be achieved. On the other, the communication

itself with the UNITA beacon is part of the test. Moreover, the users’ attitude on ultrasonic

communication will be inquired.

5.1.2 Target Group

The target group of the UNITA beacon with the application SocialWall are people, regard-

less of their gender, between 20 and 40 years. The education level and their income are

not relevant. Though, their smartphone usage and experience should be at least at the

average or higher. They want to try out digital version of physical items or processes. Fur-

ther, the target group already uses conventional messaging applications and is interested

in trying out new apps.

5.1.3 Study Design

Figure 5.1. Steps of the user study, described in the text.

58

5 Evaluation

The user study, see figure 5.1, starts with question about the demographics and smart-

phone usage of the test person. Next, a questionnaire based interview about previous

experience with ultrasonic communication was added, followed by a system acceptance

scale to measure the acceptance of ultrasound in general (Van Der Laan et al., 1997). Af-

terwards, tasks on using SocialWall have to be executed. Further, a system usability scale

on the usage of the beacon and the application, after fulfilling the tasks, was included. Last,

a second questionnaire based interview about the usability of the proof-of-concept appli-

cation SocialWall was included. Different types of questions were used for the interview,

either yes-or-no-questions in special cases, open questions or Likert scales with situational

enquiries. The full questionnaire is listed in the appendix C.

5.1.4 Research Questions

Following questions should be answered by testing the ultrasonic beacon with the applica-

tion SocialWall. They are split into two parts, general questions about ultrasonic communi-

cation and specialized ones on the UNITA beacon and the application itself:

• Ultrasonic Communication

– Q1 Would people accept and trust ultrasonic communication?

– Q2 Would ultrasound be a useful alternative for other technologies?

– Q3 Which use cases would be suitable for ultrasonic communication?

• Unita Beacon and SocialWall-Application

– Q4 Would people like the idea of a location-based ultrasound black board?

– Q5 How intuitive is the use of the beacon with “SocialWall”?

– Q6 Would people need a kind of additional feedback?

– Q7 What improvements are needed to be more user-friendly?

5.1.5 Task Description

The target group can leave public and private messages for other people. They pair with

the UNITA beacon to use the application SocialWall. The application is location-based and

private messages can only be retrieved on location. There are several reasons why they

use the application SocialWall. First, they can use the possibility of communication without

enabling further technologies like Wi-Fi or Bluetooth. They can connect with the UNITA

beacon just via the smartphone loudspeaker and microphone. Second, they can leave

messages for other people which are only retrievable at the beacons place. Further, they

can retrieve messages on-location.

59

5 Evaluation

5.2 User Study Results

The following section shows the results of the user study. The interpretation of the results,

as well as the answering of the previously defined global question, follows in the chapter 6.

5.2.1 Demographics

The demographics of the tested users is shown in table 5.1:

Number of

Tested Users

Gender

Female 6

Male 5

Age

20-24 1

25-29 6

30-34 1

35-40 3

Profession

Developers 4

Usability/UX Experts 4

Non-technical jobs 3

Table 5.1. Overview on the demographics of the tested users.

This distribution was chosen, because of getting information on different aspects of the

implementation of SocialWall. Further, the smartphone usage of the tested users is shown

in table 5.2. The main tasks performed on the smartphone are social media, email, mes-

saging apps like Whatsapp, telephone calls, calendar, and internet in general. The ques-

tion, if they already used a location-based service, was positively answered by 9 people

and most frequently mentioned applications were the game Pokemon Go and a map app.

60

5 Evaluation

Smartphone Usage
Number of

Tested Users

Never/I do not have one 0

Not daily 0

Less than 10 minutes 0

10 to 15 minutes 0

15 to 30 minutes 0

30 to 45 minutes 2

45 to 60 minutes 2

more than 61 minutes 7

Table 5.2. Overview on the smartphone usage of the tested users.

5.2.2 Ultrasonic Communication

Starting with the general part about ultrasonic communication of the user study, the results

are as follows:

The question, if the users heard about ultrasonic communication before, was answered

with yes by 8 people. Mostly, they heard about it from research projects or news articles

and their knowledge about it is minimal. Whereas, only 4 users knew before that their

smartphone can send and receive ultrasound messages. The number of active users is

even smaller as only 1 person uses a ultrasonic firewall for blocking unwanted inaudible

messages. The mean of liking the idea of sending data over inaudible sound is 4 and

users mentioned the privacy of the transmission and the possible low cost feature of it. In

addition, the question about the use of ultrasound to communicate with other devices was

rated by a mean of 3.72. The users further commented that they would use it, if it is easy

to use, safe, cheap, secure, makes something easier and offers a good alternative to an

existing technology.

Furthermore, the handling needs to be easy to learn and it has to be somehow control-

lable as it is not hearable. 10 of 11 users already pair their devices with Bluetooth speakers

and besides that, they use it for media boxes (5 of 11), entrances with NFC (3 of 11) and

two users us NFC for mobile payment and ticketing. For the replacement with ultrasound,

everyone would use it for pairing with loudspeakers, 7 would pair with their media box, 9

would use it for tickets and entrances and mobile payment were mentioned by some users

under the condition that it is safe. Next, the usefulness and the satisfying scale were mea-

sured by the system acceptance scale from -2 to 2. The usefulness was rated with a mean

of 1.04, which is already a good rating. Whereas, the satisfaction was rated with a mean of

0.53, which is positive but could be improved (Van Der Laan et al., 1997). The satisfaction

scale is lower as more users think ultrasound a good alternative to existing technologies,

though they are not sure if ultrasonic communication meets their expectations of it.

61

5 Evaluation

5.2.3 Usability of SocialWall

The following section shows the results of the proof-of-concept related questions.

After the user tests, the system usability scale (SUS) on the SocialWall application was

performed. The SUS has a value range of 0 to 100 and interprets the like in following

table 5.3:

SUS Score Grade Adjective Rating

>80.3 A Excellent

68 – 80.3 B Good

68 C Okay

51 – 68 D Poor

<51 F Awful

Table 5.3. Overview on the smartphone usage of the tested users.

The result of the performed SUS, is a mean of 75.91 and stands for a B, which means

good (UXUITrend, 2017).

Additionally, further questions on the use case were asked, starting with the question

of hearing something unusual while interacting with the beacon. This was answered by 8

people with no, and only three users had either a slight pressure on their ears or heard a

silent cracking noise one or two times. Next, the question, on how intuitive SocialWall is

was answered by a mean of 4.27 and comments like the concept was intuitive, good icons

were used, the setup is easy, and it is similar to existing messaging apps. But further, the

need of an onboarding was mentioned as well as a sometimes misleading wording.

Following with the question, about how easy the application was to use, resulted in a

mean rating of 4.36 and comments about the not overloaded interface and the fact that

the process and the used symbols are already known. Further on, the question about

convenience of the pairing process was rated with 3.82 and the main fact asked by the

users was more feedback. This shows also the question about having problems during

the tasks, which was mostly always missing feedback on sending and receiving. On the

question for additional feedback, most users mentioned adding feedback for the sending

and receiving process in form of a kind of loading animation symbol or a progress bar to be

sure that the send of the message works or the listening still is active. Besides that, a LED

for the beacon was requested, which should represent the active status of the beacon.

In addition, the question about how the users like the idea of such an ultrasonic black

board resulted in a mean rating of 4.73. The test people mentioned that it is a funny idea

and they would use it for example for communication with colleagues, for work, or like a kind

of geocaching. An important aspect is the security and encryption of the sent messages.

The question about the on-location aspect was admitted as a good idea, which makes it

physical to the real world and boosts interaction to go to the beacon, though it still depends

on the use case. The tested people further mentioned, that they would likely use it, if it is

62

5 Evaluation

set up on a public place. Only 4 of 11 users were not sure or would definitely not use it.

Last, for general improvements, it should be more stable, the design needs to be updated,

feedback has to be added and manual, how to use it, would be nice. Besides that, the LED

status indication was noted again.

63

6 Discussion and Future Work

6.1 UNITA Beacon and Ultrasound Communication

The hardware research showed, that with low cost components and a single-board com-

puter a beacon for ultrasonic communication can be assembled. The chosen Raspberry Pi

3 B was able to do real time audio processing and to keep the socket connection with the

server. Though this was not the smallest, cheapest and most energy saving option, it was

perfect for building a first stable version of the beacon. The other components cost in sum

less than 20 euros and are in combination with a 20 euro power bank already runnable in

theory. Though, the biggest point to tackle, is getting the amplifying for the microphone

working. The tested amplifiers were either to strong and produced to much noise or were

fine-grained enough, but did not deliver enough Bias voltage to run the condenser micro-

phones. On the loudspeaker side, more detailed and sized tests have to be run. The

current setup shows that they are able to send signals, but need further tests on stability

and reliability on different settings. These two things have to be addressed to get a fully

working beacon. The beacon itself, components inside as well as the case, can be further

improved and possible extensions are mentioned in this chapter.

6.2 UNITA SDK and Server

The first version of the SDK is already a good base for developing an own application. It

consists of many atomic features, which still are partly incomplete and can be extended.

Many message types for various use cases are in and can be used and inherited. The

conversion between lowest layer and the application on top is given and can be made more

generic in terms of headers. At the moment, the message headers are rather static and

operate on a byte level instead of bit-wise. In addition, one communication method beside

ultrasound is set up, though more technologies can be added. Further, the extension of

the open source ultrasound communication protocol offers a multipackage system and

provides an important part of the system architecture. The server side, has a both the

REST endpoints and the WebSocket listeners implemented. It receives and processes

messages but still the processing needs further improvement on efficiency and expansion

of the functionality. In addition, the storage of the messages and peers was developed

independently and flexible on different message types.

64

6 Discussion and Future Work

6.3 User Study Interpretation: SocialWall

The implementation of the main use case SocialWall showed, that with the UNITA SDK a

functional application with ultrasonic communication can be developed. The basic proof-of-

concept app was a good base for user tests and already showed several interesting results.

Overall, the result of the system usability scale of SocialWall resulted in a mean rating of

75.91 which is rated as B and already acceptable and good (UXUITrend, 2017). Further,

answering the question Q5, listed in chapter 5.1.4, about how intuitive the application was,

gave back a rating of 4.27 of 5 and a very intuitive setup, though the wording is still mislead-

ing sometimes. The application was rather easy-to-use as the result was a rating of 4.36

and only the pairing process underperformed a bit with 3.82. The users mentioned that the

interface was not overloaded and the app interaction was similar to existing messaging ap-

plications. Several improvements were mentioned, whereas the biggest one is more and

better feedback on sending and receiving messages, which answers the corresponding

questions Q6 and Q7 about additional feedback and improvements,listed in chapter 5.1.4.

Especially loading symbols and animations, and a kind of progress bar were mentioned.

Further, LEDs for the beacon status were asked.

Last, the question Q4 about the idea of such a location-based ultrasound black board,

listed in chapter 5.1.4, was answered by a rating of 4.73 of 5 for liking the idea. The users

said, that it is a "funny" idea and they would be curious to test it out, especially for the

on-location aspect as this boosts interaction with the beacon and the real physical world.

Depending on the use case and how stable and secure it is most of the test persons would

use it at public places. Overall the idea was well received.

6.4 User Study Interpretation: Ultrasonic Communication

The user tests then showed that many people already heard about ultrasound, though they

mostly do not know how it works and which devices are able to perform ultrasonic communi-

cation. To answer the question Q2, if it would be a useful alternative for other technologies,

listed in chapter 5.1.4, several things need to be given. People need more basic knowledge

about ultrasound before using it, as the process for sending and receiving needed a spe-

cial position of the smartphone. They have to know that ultrasound needs a line-of-sight

to the speaker or microphone in comparison with Bluetooth or Wi-Fi. Holding it wrong or

covering the device, could already lead to errors. Further, security and easy handling are

important to meet the users requirements and expectations. This conditions also need to

be met to give the users trust as the messages are not hearable. The system acceptance

scale then confirmed the answer of question Q1, listed in chapter 5.1.4, as the ratings were

rather positive on the usefulness part as well as on the satisfaction scale. When asking the

users, for which use cases they would use ultrasound instead of Bluetooth and NFC, they

mostly agreed on pairing with loudspeakers and media boxes, and using it for ultrasonic

65

6 Discussion and Future Work

tickets and opening entrances, which answers question Q3, listed in chapter 5.1.4. Mobile

payment is also covered by this opinion, but only in a safe environment.

6.5 Future Topics and possible Extensions

During the development and user test phase, several extension ideas appeared. This

extensions would apply for the beacon and the hardware, as well as for the UNITA SDK,

server and use case application SocialWall.

First, a smaller beacon case with more compact assembled components could be cre-

ated. The current version is relatively big, because of stability and testing purposes. Fur-

ther, the beacon could be then made waterproof, to be set up outside without worrying

about rain, snow or wind. Accompanying with that, instead of a Raspberry Pi 3 B a

Raspberry Pi Zero could be used and tested to create an even smaller beacon. On the

connection side, the previously described technology LoRaWAN would be an addition for

communication with the server. Depending on the use case this could be a substitute for

the network connection. This would require low data transmission and non-time critical

exchange of information. A further advantage would be the resulting lower energy con-

sumption. As currently, the beacon is relying on a local Wi-Fi, a GSM module would be an

addition for more flexibility. It would need more power and a SIM card to work, but high

data rates can be achieved.

On the UNITA SDK side, the static header can be made more flexible by making it dy-

namic by changing the length depending on one value. Furthermore, the header structure

can be changed from byte-wise entries to bit-wise splitting. This means, header values

which only need one or two bits, do not need to reserve a whole byte. This would allow

to add more smaller header values, using one or two bits, and makes the header more

meaningful and customizable.

Another extension would be the possibility of more than one recorder and sender at the

same time on different frequencies. By enabling several recorders, different messages

could be received in parallel. In addition, defining and measuring distances would create

more possibilities for sending information on different levels. Besides that, the security side

would need a separate controller called AuthenticationController for handling everything,

which relates to encryption, authentication and key- and token-handling.

The server could be extended by adding logging for developers. A basis for writing logs

to files and including that in the source code would be possible. Further, reading those logs

and generating statistics and evaluations is an extension. Additionally, a full admin panel

for maintaining the applications and beacons would be a simplification for the developers.

With having this in mind, the maintenance of different applications on one server needs to

be extended. Besides that, a management option for commands via the server needs to

be created.

66

6 Discussion and Future Work

The use case application can be extended by more feedback mechanisms. For further

development of SocialWall, commonly used software parts of the client and beacon ap-

plication could be refactored into a base module. This would be easier to maintain and

extend. Both applications would then extend from the module. On the private messag-

ing part, more local message options for retrieving data can be implemented. Last, more

use cases can be implemented, to create different applications for different purposes using

ultrasonic communication.

67

7 Conclusion

The goal of UNITA was to build hardware and software for creating an ultrasonic beacon

representing a novel communication endpoint. The beacon should be easily reproducible

and keep the costs and energy consumption at a minimum, whereas, the software should

give a good basis for other developers, who want to develop applications using ultrasonic

communication. At the moment, there is no open source SDK for implementing IoT appli-

cations using ultrasound. Additionally, there is no open source beacon specialized devel-

opment kit for ultrasonic communication available. The master thesis should answer the

question of how an ultrasonic beacon could be developed with simple hardware and to

which degree users accept and trust the beacon and its communication.

To solve this problem, a hardware beacon, a SDK and a server basis were created,

In addition, a proof-of-concept application called SocialWall, was implemented using the

SDK. The SDK has implemented basic features for most use case applications, which

were gathered during the creating of UNITA. On the beacon side there are still open points,

but it represents already a good base for finalizing it to a fully functional version. SocialWall,

further proofed while developing that the SDK is already well-designed.

The SDK is published as open source software and can be used and further developed

by the community. The application SocialWall is also released under open source and

gives future developers an insight on how to create their own application.

UNITA shows that with the SDK and open source hardware, applications using ultrasonic

communication are easy to set up. Developers can build upon the UNITA SDK and run a

server instance. User tests showed that most people know about ultrasound, whereas they

only know it exists and often not more. Results showed, that the additional communication

channel is well received and would be used for several purposes. An important factor is the

security aspect, which needs to be addressed in a good way and further raises awareness

on what ultrasound can do or not. Additionally, the most important factor was the missing

feedback mentioned during the tests. Approaching this facets of ultrasonic communication,

many rich future applications can be created.

Still missing in the implementation of the SDK are security features through the ultra-

sound channel. Further, the interaction model with smartphones and beacons needs to be

retested and changed. This could lead to a set of rules about how to create the interaction

and the interface of an inaudible communication. The beacon offers also a reference point

for improvement on cost, size, performance, waterproofness, weather independence, and

server connection setup. For future projects, the field of Industry 4.0 could be specifically

68

7 Conclusion

addressed and applications based on their needs could be created. Larger settings with

more beacons and users can be evaluated and new features and extensions can be imple-

mented. This shows that UNITA has a big potential for the future and can be extended and

improved into many directions.

UNITA should boost the development of ultrasonic communication applications and in-

crease the size of the ultrasound developer community. Developers can develop their own

useful applications with the SDK and can further extend the SDK itself. UNITA is fully open

source under the GNU General Public License Version 3 (GPL 3) and available online on

the website unita.fhstp.ac.at.

69

Bibliography

Alliance, L. (2015). LoRaWAN™ What is it? Technical report.

Alzahrani, S. M. (2017). Sensing for the Internet of Things and Its Applications. In 2017 5th

International Conference on Future Internet of Things and Cloud Workshops (FiCloudW),

pages 88–92, Prague. IEEE.

Arentz, W. A. and Bandara, U. (2011). Near ultrasonic directional data transfer for modern

smartphones. page 481. ACM Press.

Arp, D., Quiring, E., Wressnegger, C., and Rieck, K. (2017). Privacy Threats through

Ultrasonic Side Channels on Mobile Devices.

Bisio, I., Delfino, A., Grattarola, A., Lavagetto, F., and Sciarrone, A. (2018). Ultrasounds-

Based Context Sensing Method and Applications Over the Internet of Things. IEEE

Internet of Things Journal, 5(5):3876–3890.

Bluetooth SIG, I. (2013). Bluetooth Low Energy Technology | Bluetooth Technology Web-

site.

Carotenuto, R., Merenda, M., Iero, D., and Corte, F. G. D. (2018). Ranging RFID Tags With

Ultrasound. IEEE Sensors Journal, 18(7):2967–2975.

CopSonic (2019). CopSonic - Ultrasonic authentication.

Deshotels, L. (2014). Inaudible Sound As a Covert Channel in Mobile Devices. In Pro-

ceedings of the 8th USENIX Conference on Offensive Technologies, WOOT’14, pages

16–16, Berkeley, CA, USA. USENIX Association. event-place: San Diego, CA.

Eurotech (2010). MQTT V3.1 Protocol Specification.

Fette, I. and Melnikov, A. (2011). The WebSocket Protocol. Technical report.

Fielding, R. T. (2000). Fielding Dissertation: CHAPTER 5: Representational State Transfer

(REST).

Getreuer, P., Gnegy, C., Lyon, R. F., and Saurous, R. A. (2018). Ultrasonic Communication

Using Consumer Hardware. IEEE Transactions on Multimedia, 20(6):1277–1290.

Hanspach, M. and Goetz, M. (2013). On Covert Acoustical Mesh Networks in Air. Journal

of Communications, 8(11):758–767.

70

Hosman, T., Yeary, M., Antonio, J. K., and Hobbs, B. (2010). Multi-tone FSK for ultrasonic

communication. pages 1424–1429. IEEE.

ITU (1994a). Information technology - Open Systems Interconnection - Application layer

structure - ITU-T Recommendation X.207. Technical report.

ITU (1994b). Information technology - Open Systems Interconnection - Basic Reference

Model: Conventions for the definition of OSI services - ITU-T Recommendation X.210.

Technical report.

ITU (1994c). Information technology - Open Systems Interconnection - Presentation ser-

vice definition - Recommendation X.216. Technical report.

ITU (1996a). Information technology - Open Systems Interconnection - Physical service

definition - ITU-T Recommendation X.211. Technical report.

ITU (1996b). Information technology - Open Systems Interconnection - Session service

definition - Recommendation X.215. Technical report.

ITU (1996c). Information technology - Open Systems Interconnection - Transport service

definition - ITU-T Recommendation X.214. Technical report.

ITU (1997). Information technology - Open Systems Interconnection - Data Link service

definition - ITU-T Recommendation X.212. Technical report.

ITU (2002). Information technology - Open Systems Interconnection - Network service

definition - ITU-T Recommendation X.213. Technical report.

Ka, S., Kim, T. H., Ha, J. Y., Lim, S. H., Shin, S. C., Choi, J. W., Kwak, C., and Choi, S.

(2016). Near-ultrasound communication for TV’s 2nd screen services. pages 42–54.

ACM Press.

Lazik, P., Rajagopal, N., Shih, O., Sinopoli, B., and Rowe, A. (2015). ALPS: A Bluetooth

and Ultrasound Platform for Mapping and Localization. pages 73–84. ACM Press.

Lazik, P. and Rowe, A. (2012). Indoor pseudo-ranging of mobile devices using ultrasonic

chirps. page 99. ACM Press.

Legendre, F. (2015). How Google Nearby (really) works – and what else it does?

Li, C., Hutchins, D., and Green, R. (2008). Short-range ultrasonic digital communications in

air. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55(4):908–

918.

Lin, M.-C., Huang, F.-Y., and Chiueh, T.-D. (2015). A-NFC: Two-way near-field communi-

cations (NFC) via inaudible acoustics. pages 1–6. IEEE.

71

Lisnr (2019). Welcome to LISNR, the data-over-sound leader.

Lopes, C. and Aguiar, P. (2003). Acoustic modems for ubiquitous computing. IEEE Perva-

sive Computing, 2(3):62–71.

Madhavapeddy, A., Scott, D., Tse, A., and Sharp, R. (2005). Audio Networking: The

Forgotten Wireless Technology. IEEE Pervasive Computing, 4(3):55–60.

Mavroudis, V., Hao, S., Fratantonio, Y., Maggi, F., Kruegel, C., and Vigna, G. (2017). On the

Privacy and Security of the Ultrasound Ecosystem. Proceedings on Privacy Enhancing

Technologies, 2017(2).

Mitchell, B. (2019). 802.11 WiFi Standards Explained.

Murata, S., Yara, C., Kaneta, K., Ioroi, S., and Tanaka, H. (2014). Accurate Indoor Posi-

tioning System Using Near-Ultrasonic Sound from a Smartphone. pages 13–18. IEEE.

NearBytes (2019). NearBytes | Contactless Communication Technology.

Nosowitz, D. (2011). Everything You Need to Know About Near Field Communication.

Ortega, A. A., Bettachini, V. A., Fierens, P. I., and Alvarez-Hamelin, J. I. (2014). Encrypted

CDMA Audio Network. Journal of Information Security, 05(03):73–82.

Santagati, G. E. and Melodia, T. (2017). A Software-Defined Ultrasonic Networking Frame-

work for Wearable Devices. IEEE/ACM Transactions on Networking, 25(2):960–973.

Schiller, J. (2001). Mobilkommunikation: Techniken für das allgegenwärtige Internet.

Net.com. Addison-Wesley, München. OCLC: 247974797.

Shelby, Z., Hartke, K., and Bormann, C. (2014). The Constrained Application Protocol

(CoAP).

Sonarax (2019). Sonarax | Data-Over-Sound and Location Based Services.

Spectrum, I. (2016). 802.11-2016 - IEEE Standard for Information technology–

Telecommunications and information exchange between systems Local and metropolitan

area networks–Specific requirements - Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications.

Spectrum, I. (2017). Everything You Need To Know About 5g.

Sun, D., Wei, D., Zhang, N., Lv, Z., and Yin, X. (2016). Network transmission of hidden

data using smartphones based on compromising emanations. In 2016 Asia-Pacific In-

ternational Symposium on Electromagnetic Compatibility (APEMC), volume 01, pages

190–193.

72

Thiel, B., Kloch, K., and Lukowicz, P. (2012). Sound-based proximity detection with mobile

phones. pages 1–4. ACM Press.

UXUITrend (2017). Measuring and Interpreting System Usability Scale (SUS).

Van Der Laan, J. D., Heino, A., and De Waard, D. (1997). A simple procedure for the

assessment of acceptance of advanced transport telematics. Transportation Research

Part C: Emerging Technologies, 5(1):1–10.

Vinoski, S. (2006). Advanced Message Queuing Protocol. IEEE Internet Computing,

10(6):87–89.

Wang, Q., Ren, K., Zhou, M., Lei, T., Koutsonikolas, D., and Su, L. (2016). Messages

behind the sound: real-time hidden acoustic signal capture with smartphones. pages

29–41. ACM Press.

Webopedia (2008). How do Wireless Networks Work?

Yan, H., Zhou, S., Shi, Z. J., and Li, B. (2007). A DSP implementation of OFDM acoustic

modem. page 89. ACM Press.

Zeppelzauer, M. and Ringot, A. (2019). SoniTalk: An Open Protocol for Data-Over-Sound

Communication. Technical report.

Zeppelzauer, M., Ringot, A., and Taurer, F. (2018). SoniControl - A Mobile Ultrasonic

Firewall. In 2018 ACM Multimedia Conference on Multimedia Conference - MM ’18,

pages 1250–1252. arXiv: 1807.07617.

Zhang, B., Zhan, Q., Chen, S., Li, M., Ren, K., Wang, C., and Ma, D. (2014). PriWhisper:

Enabling Keyless Secure Acoustic Communication for Smartphones. IEEE Internet of

Things Journal, 1(1):33–45.

Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., and Xu, W. (2017). DolphinAttack: Inaudi-

ble Voice Commands. In Proceedings of the 2017 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS ’17, pages 103–117, New York, NY, USA.

ACM.

73

List of Figures

2.1 System overview of the Acoustic Location Processing System (ALPS), (Lazik

et al., 2015). 10

2.2 Four privacy threats which are generated by the ultrasonic channel: Media

Tracking, Cross-Device Tracking, Location Tracking and Deanonymization

(Arp et al., 2017). 15

3.1 The UNITA Beacon, the server and the mobile device with their correspond-

ing communication method. 25

3.2 Overview of the three layers, which are used in UNITA: SoniTalk, UNITA

SDK and an Application. 26

3.3 The beacon case with first hardware parts assembled. 29

3.4 The self-soldered amplifier consisting of transistors, resistors ans capacitors. 31

3.5 All components assembled in the beacon case. 31

3.6 The first components including power supply, the Raspberry Pi, the sound-

card, and the wire cables for the next components. 32

3.7 The powerbank, the Raspberry Pi, the soundcard, and the wire cables as-

sembled in the beacon. 32

3.8 The microphone, the loudspeaker and the amplifier wired on the breadboard. 33

3.9 The amplifiers, the wiring and the input/output component shown within the

beacon case. 34

3.10 Class diagram of the main classes in UNITA. Description in the text. 35

3.11 Class diagram of the UNITA server with the six packages, which contain the

corresponding TypeScript-files. 41

3.12 Activity diagram of the server initialization. 44

3.13 Activity diagram of an endpoint call for retrieving messages. 45

3.14 One beacon placed at the entrance of the university. 46

4.1 Use case visualization of SocialWall, with all communication possibilities and

interacting components. 52

4.2 Initialization of the beacon. 53

4.3 Screenshot of client application of the pairing fragment. 55

4.4 Screenshot of client application of the messages fragment. 56

4.5 Screenshot of client application of the sending fragment. 57

74

5.1 Steps of the user study, described in the text. 58

7.1 Class diagram of the ReceiveController of the UNITA SDK. 79

7.2 Class diagram of the SendController of the UNITA SDK. 79

7.3 Class diagram of the SocketController of the UNITA SDK. 80

7.4 Class diagram of the message types of the UNITA SDK. 80

7.5 Class diagram of the peer types of the UNITA SDK. 80

7.6 Class diagram of the remaining controller classes and the utility classes of

the UNITA SDK. 81

75

List of Tables

3.1 List of microcontrollers and single-board computers to choose from. 28

3.2 List of microphones and loudspeakers for further testing. 28

3.3 List of all implemented controllers and their corresponding functionality. . . . 35

3.4 List of message types and their corresponding functionality. 36

5.1 Overview on the demographics of the tested users. 60

5.2 Overview on the smartphone usage of the tested users. 61

5.3 Overview on the smartphone usage of the tested users. 62

76

Listings

3.1 SoniTalkMultiMessage constructor . 36

3.2 Creation of message listeners for all implemented message types. 38

3.3 Several listeners for socket events. 39

3.4 Database model example scheme. 42

3.5 Socket listener for sending messages. 46

4.1 Changes of manifest file for launch activity. 53

4.2 Permissions and usage of Android Things library. 54

7.1 SoniTalkMultiMessage constructor . 82

7.2 Calling the calculation for number of packets. 82

7.3 Calculating the number of packets. 82

7.4 Calling the multi message split method. 82

7.5 Splitting a multi message into several single messages. 83

7.6 Filling the arrays with short audio data. 84

7.7 Decoding of the received single SoniTalkMessage and saving or forwarding

them depending on the number of packets. 84

7.8 Instantiating the permission receiver. 86

7.9 Implementing interface of SoniTalkDecoder. 86

7.10 Checking for the message type. 87

7.11 Add function to get access to the message listeners. 88

7.12 Conversion call for UnitaMessages to SoniTalkMultiMessages. 88

7.13 Routine for sending messages and resending them after specific time. . . . 88

7.14 Socket event for logging in a beacon. 89

7.15 Login utility for keeping the actual beacon in SharedPreferences. 90

7.16 Conversion of UnitaMessages to TextMessage objects. 90

7.17 Connection function for MongoDB database. 91

7.18 Server initialization. 91

7.19 Connect to database call and directory creation for possible uploads. 91

7.20 REST endpoint for map visualization. 92

7.21 REST endpoint for getting all messages. 92

7.22 Getter for all public messages and private addressed ones. 92

7.23 Saving routine for incoming messages. 93

77

7.24 Handling the login of beacons. 94

7.25 Event for checking location and state of beacons. 94

7.26 Creating a new WebSocket instance. 95

7.27 Global socket listener for connection. 95

7.28 Initialization of beacon application. 95

7.29 Response listener of login from the server. 96

7.30 Listener example for a message type. 97

7.31 Listener example for url response from server. 97

7.32 Routine example of further TextMessage processing. 98

7.33 User login process with REST call. 98

7.34 Processing for a received TextMessage. 100

7.35 REST API endpoints interface for client app. 101

78

Appendices

A Class Diagrams - UNITA SDK

Figure 7.1. Class diagram of the ReceiveController of the UNITA SDK.

Figure 7.2. Class diagram of the SendController of the UNITA SDK.

79

Figure 7.3. Class diagram of the SocketController of the UNITA SDK.

Figure 7.4. Class diagram of the message types of the UNITA SDK.

Figure 7.5. Class diagram of the peer types of the UNITA SDK.

80

Figure 7.6. Class diagram of the remaining controller classes and the utility classes of the
UNITA SDK.

81

B Source Code Snippets

Listing 7.1. SoniTalkMultiMessage constructor

1 public SoniTalkHeader (byte messageId , byte packetId , byte

↪→ numberOfPackets) {

2 th is . messageId = messageId ;

3 th is . packet Id = packet Id ;

4 th is . numberOfPackets = numberOfPackets ;

5 }

Listing 7.2. Calling the calculation for number of packets.

1 f i n a l i n t nTimes = EncoderUt i l s . calculateNumberOfPackets (message ,

↪→ con f i g) ;

2 cu r ren tMu l t i p leAud ioTrack = new AudioTrack [nTimes] ;

Listing 7.3. Calculating the number of packets.

1 public s t a t i c i n t calculateNumberOfPackets (SoniTalkMult iMessage

↪→ message , SoniTalkConf ig con f i g) {

2 i n t numOfBytes = con f i g . getnMessageBlocks () * (con f i g .

↪→ getnFrequencies () / 8)−2;

3 i n t f ixedHeaderSize = 3;

4 f i n a l byte [] bytes = message . getMessage () ;

5 byte [] headerBytesPlaceholder = new byte [f ixedHeaderSize] ;

6 byte [] checkSizeByte = A r r a y U t i l s . addAl l (bytes ,

↪→ headerBytesPlaceholder) ;

7 i f (EncoderUt i l s . isA l lowedByteArraySize (checkSizeByte , con f i g))

↪→ {

8 return 1;

9 } else {

10 i f (bytes . leng th%(numOfBytes−f ixedHeaderSize) ==0) {

11 return bytes . leng th / (numOfBytes−f ixedHeaderSize) ;

12 } else {

13 return bytes . leng th / (numOfBytes−f ixedHeaderSize) +1;

14 }

15 }

16 }

Listing 7.4. Calling the multi message split method.

82

1 f i n a l SoniTalkMessage [] soniTalkMessages = EncoderUt i l s .

↪→ spl i tMul t iMessageIntoSoniTalkMessages (message , nTimes ,

↪→ con f i g) ;

Listing 7.5. Splitting a multi message into several single messages.

1 public s t a t i c SoniTalkMessage []

↪→ spl i tMul t iMessageIntoSoniTalkMessages (SoniTalkMult iMessage

↪→ message , i n t numberOfPackets , SoniTalkConf ig con f i g) {

2 SoniTalkMessage [] soniTalkMessages = new SoniTalkMessage [

↪→ numberOfPackets] ;

3 i n t numOfBytes = con f i g . getnMessageBlocks () * (con f i g .

↪→ getnFrequencies () / 8)−2;

4 i n t f ixedHeaderSize = 3;

5 i n t messageId = (i n t) (255*Math . abs (Math . random ())) ;

6 i n t packet Id = 1;

7 SoniTalkHeader soniTalkHeader ;

8 for (i n t i = 0 ; i <numberOfPackets ; i ++) {

9 byte [] messageBodyPart ;

10 i f ((i +1) != numberOfPackets) {

11 i n t messageLength = numOfBytes−f ixedHeaderSize ;

12 messageBodyPart = new byte [messageLength] ;

13 System . arraycopy (message . getMessage () , messageLength * i

↪→ , messageBodyPart , 0 , messageLength) ;

14 } else {

15 i n t restMessageLength = message . getMessage () . length −((

↪→ numOfBytes−f ixedHeaderSize) * (numberOfPackets−1)

↪→) ;

16 messageBodyPart = new byte [restMessageLength] ;

17 System . arraycopy (message . getMessage () , (numOfBytes−
↪→ f ixedHeaderSize) * (numberOfPackets−1) ,

↪→ messageBodyPart , 0 , restMessageLength) ;

18 }

19 soniTalkHeader = new SoniTalkHeader (EncoderUt i l s .

↪→ i n tToByteAr ray (messageId) , EncoderUt i l s .

↪→ i n tToByteAr ray (packet Id) , EncoderUt i l s .

↪→ i n tToByteAr ray (numberOfPackets)) ;

20 soniTalkMessages [i] = new SoniTalkMessage (messageBodyPart ,

↪→ soniTalkHeader) ;

21 packet Id ++;

22 }

83

23

24 return soniTalkMessages ;

25 }

Listing 7.6. Filling the arrays with short audio data.

1 soniTalkMessages [i] = soniTalkEncoder . generateMessage (

↪→ soniTalkMessages [i] . getMessage () , soniTalkMessages [i] .

↪→ getSoniTalkHeader ()) ;

Listing 7.7. Decoding of the received single SoniTalkMessage and saving or forwarding

them depending on the number of packets.

1 i f (par i tyCheckResu l t == 0) {

2 byte [] numberOfPackets = new byte [1] ;

3 System . arraycopy (receivedMessage , 2 , numberOfPackets , 0 , 1) ;

4 byte [] messageId = new byte [1] ;

5 byte [] packet Id = new byte [1] ;

6 System . arraycopy (receivedMessage , 0 , messageId , 0 , 1) ;

7 System . arraycopy (receivedMessage , 1 , packetId , 0 , 1) ;

8 SoniTalkHeader soniTalkHeader = new SoniTalkHeader (messageId

↪→ [0] , packet Id [0] , numberOfPackets [0]) ;

9 byte [] receivedMessageBody = new byte [receivedMessage . leng th −
↪→ 3] ;

10 System . arraycopy (receivedMessage , 3 , receivedMessageBody , 0 ,

↪→ receivedMessage . leng th − 3) ;

11

12 i f ((i n t) numberOfPackets [0] > 1) {

13 SoniTalkMessage soniTalkMessage = new SoniTalkMessage (

↪→ receivedMessageBody , soniTalkHeader) ;

14

15 i f (! soniTalkMessageReceiveOverviewDict ionary . containsKey (

↪→ S t r i n g . valueOf ((i n t) messageId [0]))) {

16 soniTalkMessageReceiveOverviewDict ionary . put (S t r i n g .

↪→ valueOf ((i n t) messageId [0]) , new TreeMap<St r ing

↪→ , SoniTalkMessage > ()) ;

17 Map<St r ing , SoniTalkMessage>

↪→ soniTalkMessageReceiveDict ionary =

↪→ soniTalkMessageReceiveOverviewDict ionary . get (

↪→ S t r i n g . valueOf ((i n t) messageId [0])) ;

18 i f (! soniTalkMessageReceiveDict ionary . containsKey (

↪→ S t r i n g . valueOf ((i n t) packet Id [0]))) {

84

19 soniTalkMessageReceiveDict ionary . put (S t r i n g .

↪→ valueOf ((i n t) packet Id [0]) , soniTalkMessage

↪→) ;

20 }

21 } else {

22 Map<St r ing , SoniTalkMessage>

↪→ soniTalkMessageReceiveDict ionary =

↪→ soniTalkMessageReceiveOverviewDict ionary . get (

↪→ S t r i n g . valueOf ((i n t) messageId [0])) ;

23 i f (! soniTalkMessageReceiveDict ionary . containsKey (

↪→ S t r i n g . valueOf ((i n t) packet Id [0]))) {

24 soniTalkMessageReceiveDict ionary . put (S t r i n g .

↪→ valueOf ((i n t) packet Id [0]) , soniTalkMessage

↪→) ;

25 }

26 i f (soniTalkMessageReceiveDict ionary . s ize () == (i n t)

↪→ numberOfPackets [0]) {

27 Ar rayL i s t <SoniTalkMessage> receivedMessages = new

↪→ Ar rayL i s t < >() ;

28 I t e r a t o r i t = soniTalkMessageReceiveDict ionary .

↪→ ent rySet () . i t e r a t o r () ;

29 while (i t . hasNext ()) {

30 Map. Entry p a i r = (Map. Entry) i t . next () ;

31 receivedMessages . add ((SoniTalkMessage) p a i r .

↪→ getValue ()) ;

32 }

33 soniTalkMessageReceiveOverviewDict ionary . remove (

↪→ S t r i n g . valueOf ((i n t) messageId [0])) ;

34

35 not i fyMessageL is teners (DecoderUt i ls .

↪→ concatenateMessages (receivedMessages)) ;

36 }

37 }

38 } else {

39 SoniTalkMult iMessage soniTalkMult iMessage = new

↪→ SoniTalkMult iMessage (receivedMessageBody) ;

40 not i fyMessageL is teners (soniTalkMult iMessage) ;

41 }

42 } else {

85

43 byte [] receivedMessageBody = new byte [receivedMessage . leng th −
↪→ 3] ;

44 SoniTalkMult iMessage soniTalkMult iMessage = new

↪→ SoniTalkMult iMessage (receivedMessageBody) ;

45 soniTalkMult iMessage . se tCrc IsCor rec t (fa lse) ;

46 not i fyMessageL is teners (soniTalkMult iMessage) ;

47 Log . d (" SoniTalkDecoder " , " c rc i n c o r r e c t ") ;

48 }

Listing 7.8. Instantiating the permission receiver.

1 public void i n i t (Resul tReceiver sdkL is tener) {

2 i f (ins tance != n u l l) {

3 soniTa lkPermiss ionsResul tReceiver = new

↪→ SoniTalkPermiss ionsResul tReceiver (new Handler ()) ;

4 soniTa lkPermiss ionsResul tReceiver . setReceiver (th is) ;

5 th is . un i taSdkL is tener = sdkL is tener ;

6 }

7 }

8

9 @Override

10 public void onSoniTalkPermissionResul t (i n t resul tCode , Bundle

↪→ resu l tDa ta) {

11 un i taSdkL is tener . send (resultCode , resu l tDa ta) ;

12 }

Listing 7.9. Implementing interface of SoniTalkDecoder.

1 @Override

2 public void onMessageReceived (f i n a l SoniTalkMult iMessage

↪→ receivedMessage) {

3 i f (receivedMessage . i sCrcCor rec t ()) {

4 UnitaMessage unitaMessage = MessageUti ls .

↪→ convertSoniTalkMult iMessageToUnitaMessage (

↪→ receivedMessage) ;

5 checkMessageTypeAndNotifyAccordingMessage (unitaMessage) ;

6 } else {

7 }

8 }

9

10 @Override

11 public void onDecoderError (S t r i n g errorMessage) {

86

12 not i fyUni taMessageError (errorMessage) ;

13 }

Listing 7.10. Checking for the message type.

1 public void checkMessageTypeAndNotifyAccordingMessage (UnitaMessage

↪→ unitaMessage) {

2 for (BeaconListener l i s t e n e r : beaconListeners) {

3 switch (unitaMessage . getHeader () . getHeaderMessageCode ()) {

4 case 0:

5 l i s t e n e r . onUnitaMessageReceived (unitaMessage) ;

6 break ;

7 case 1:

8 TextMessage textMessage = MessageUti ls .

↪→ convertUnitaMessageToTextMessage (

↪→ unitaMessage) ;

9 l i s t e n e r . onTextMessageReceived (textMessage) ;

10 break ;

11 case 2:

12 CommandMessage commandMessage = MessageUti ls .

↪→ convertUnitaMessageToCommandMessage (

↪→ unitaMessage) ;

13 l i s t e n e r . onCommandMessageReceived (commandMessage) ;

14 break ;

15 case 3:

16 UrlMessage urlMessage = MessageUti ls .

↪→ convertUnitaMessageToUrlMessage (

↪→ unitaMessage) ;

17 l i s t e n e r . onUrlMessageReceived (urlMessage) ;

18 break ;

19 case 4:

20 TokenMessage tokenMessage = MessageUti ls .

↪→ convertUnitaMessageToTokenMessage (

↪→ unitaMessage) ;

21 l i s t e n e r . onTokenMessageReceived (tokenMessage) ;

22 break ;

23 case 5:

24 StatusMessage statusMessage = MessageUti ls .

↪→ convertUnitaMessageToStatusMessage (

↪→ unitaMessage) ;

25 l i s t e n e r . onStatusMessageReceived (statusMessage) ;

87

26 break ;

27 defaul t :

28 l i s t e n e r . onUnitaMessageReceived (unitaMessage) ;

29 break ;

30 }

31 }

32 }

Listing 7.11. Add function to get access to the message listeners.

1 public void addMessageListener (Rece iveCont ro l le r . BeaconListener

↪→ l i s t e n e r) {

2 th is . beaconListeners . add (l i s t e n e r) ;

3 }

Listing 7.12. Conversion call for UnitaMessages to SoniTalkMultiMessages.

1 currentMul t iMessage = MessageUti ls .

↪→ convertUnitaMessageToSoniTalkMult iMessage (unitaMessage) ;

Listing 7.13. Routine for sending messages and resending them after specific time.

1 resendRun = new Runnable () {

2 @Override

3 public void run () {

4 SharedPreferences sp = PreferenceManager .

↪→ getDefaul tSharedPreferences (con tex t) ;

5 boolean s t i l l R e s e n d i n g = sp . getBoolean (Conf igConstants .

↪→ RESENDING_RUNNING, Conf igConstants .

↪→ RESENDING_RUNNING_DEFAULT) ;

6 i f (shouldBeResend) {

7 i f (s t i l l R e s e n d i n g) {

8 i f (resendCounter > 0) {

9 sendMessageAgain . removeCallbacks (

↪→ sendMessageAgainRun) ;

10 soniTalkSender . send (currentMult iMessage ,

↪→ son iTa lkSender In te rva l , TimeUnit .

↪→ MILLISECONDS, ON_SENDING_REQUEST_CODE,

↪→ un i t aSe t t i ngs , soniTalkEncoder) ;

11 resendCounter−−;

12 resendMessage . postDelayed (resendRun , delayTime

↪→) ;

88

13 } else {

14 sendMessageAgain . postDelayed (

↪→ sendMessageAgainRun , delayTime / 2) ;

15 }

16 } else {

17 sp . e d i t () . putBoolean (Conf igConstants .

↪→ RESENDING_RUNNING, true) . commit () ;

18 stopResending () ;

19 }

20 }

21 }

22 } ;

23 resendMessage . postDelayed (resendRun , delayTime) ;

24

25 soniTalkSender . send (currentMult iMessage , son iTa lkSender In te rva l ,

↪→ TimeUnit . MILLISECONDS, ON_SENDING_REQUEST_CODE,

↪→ un i t aSe t t i ngs , soniTalkEncoder) ;

26 resendCounter−−;

Listing 7.14. Socket event for logging in a beacon.

1 public void loginBeacon (S t r i n g beaconName) {

2 JSONObject jsonObjec t = new JSONObject () ;

3 t ry {

4 jsonObjec t . put ("name" , beaconName) ;

5 } catch (JSONException e) {

6 e . p r in tS tackTrace () ;

7 }

8 socket . emit (" loginBeacon " , jsonObjec t) ;

9

10 socket . on (" loginBeaconResul t " , new Emi t te r . L i s t ene r () {

11 @Override

12 public void c a l l (Object . . . args) {

13 JSONArray j A r r a y = (JSONArray) args [0] ;

14 JSONObject loginResponse = n u l l ;

15 t ry {

16 loginResponse = j A r r a y . getJSONObject (0) ;

17 } catch (JSONException e) {

18 e . p r in tS tackTrace () ;

19 }

20 not i fyLoginResponse (loginResponse) ;

89

21

22 socket . o f f (" loginBeaconResul t " , th is) ;

23 }

24 }) ;

25 }

Listing 7.15. Login utility for keeping the actual beacon in SharedPreferences.

1 public s t a t i c void saveLoggedInBeacon (Context context , Beacon

↪→ loggedInBeacon) {

2 SharedPreferences sp = PreferenceManager .

↪→ getDefaul tSharedPreferences (con tex t) ;

3 SharedPreferences . E d i t o r p r e f s E d i t o r = sp . e d i t () ;

4 Gson gson = new Gson () ;

5 S t r i n g json = gson . toJson (loggedInBeacon) ;

6 p r e f s E d i t o r . pu t S t r i n g (" LoggedInBeacon " , json) ;

7 p r e f s E d i t o r . apply () ;

8 p r e f s E d i t o r . commit () ;

9 }

10

11 public s t a t i c Beacon getLoggedInBeacon (Context con tex t) {

12 Gson gson = new Gson () ;

13 SharedPreferences sp = PreferenceManager .

↪→ getDefaul tSharedPreferences (con tex t) ;

14 S t r i n g json = sp . ge t S t r i n g (" LoggedInBeacon " , " ") ;

15 return gson . fromJson (json , Beacon . class) ;

16 }

Listing 7.16. Conversion of UnitaMessages to TextMessage objects.

1 public s t a t i c TextMessage convertUnitaMessageToTextMessage (

↪→ UnitaMessage unitaMessage) {

2 byte [] communicat ionPartner IdArray = new byte [1] ;

3 System . arraycopy (unitaMessage . getMessageBody () .

↪→ getMessageBodyRaw () , 0 , communicat ionPartnerIdArray ,0 ,

↪→ 1) ;

4 byte [] messageBodyArray = new byte [unitaMessage . getMessageBody

↪→ () . getMessageBodyRaw () . length −1];

5 System . arraycopy (unitaMessage . getMessageBody () .

↪→ getMessageBodyRaw () , 1 , messageBodyArray ,0 ,

↪→ unitaMessage . getMessageBody () . getMessageBodyRaw () .

↪→ length−1) ;

90

6

7 i n t communicat ionPartnerId = communicat ionPartner IdArray [0] &

↪→ (0 x f f) ;

8 Peer communicat ionPartner = new Peer (communicat ionPartnerId) ;

9

10 return new TextMessage (unitaMessage . getHeader () . getSender () ,

↪→ unitaMessage . getHeader () . getReceiver () ,

↪→ communicationPartner , messageBodyArray) ;

11 }

Listing 7.17. Connection function for MongoDB database.

1 private connectDb = () => {

2 return mongoose . connect (process . env .DATABASE_URL, {

↪→ useNewUrlParser : true } , f u n c t i o n (e r r) {

3 i f (e r r) { throw e r r ; }

4 const dataFactory = DataFactory . ge t Ins tance () ;

5 dataFactory . createData () ;

6 }) ;

7 }

Listing 7.18. Server initialization.

1 th is . server = new h t t p . Server (th is . app) ;

2 th is . database = Connection . ge t Ins tance () ;

3 th is . socket = new Socket (th is . server) ;

4 th is . pee rCon t ro l l e r = new PeerCon t ro l l e r () ;

5 th is . peerTypeCont ro l le r = new PeerTypeContro l ler () ;

6 th is . messageControl ler = new MessageControl ler () ;

Listing 7.19. Connect to database call and directory creation for possible uploads.

1 th is . database . connectDb () . then (async (connect ion) => {

2 th is . server . l i s t e n (process . env .PORT, () => {

3 const d i r = process . env .ROOT + process . env .

↪→ NODE_PATH + " / p u b l i c / uploads / " ;

4 mkdirp (d i r , f u n c t i o n (e r r) {

5 i f (e r r) {

6 console . e r r o r (e r r) ;

7 } else {

8 console . log (" D i r e c t o r y created ! ") ;

9 }

91

10 }) ;

11 console . log (" Server runs on Por t : " + process . env .PORT + "

↪→ " + process . env .ROOT) ;

12 }) ;

13 }) ;

Listing 7.20. REST endpoint for map visualization.

1 th is . app . get (" / " , f u n c t i o n (req , res) {

2 res . sendFi le (process . env .NODE_PATH + " / index . html " , { r oo t

↪→ : process . env .ROOT}) ;

3 }) ;

4 th is . app . get (" / j s / * " , f u n c t i o n (req , res) {

5 l e t j s p t h = req . u r l ;

6 l e t j s = process . env .NODE_PATH + j s p t h ;

7 res . sendFi le (js , { r oo t : process . env .ROOT}) ;

8 }) ;

9 th is . app . get (" / assets / icons / * " , f u n c t i o n (req , res , path) {

10 l e t i conpth = req . u r l ;

11 l e t icon = process . env .NODE_PATH + iconpth ;

12 res . sendFi le (icon , { r oo t : process . env .ROOT}) ;

13 }) ;

Listing 7.21. REST endpoint for getting all messages.

1 th is . app . get (Res t In te r faceCon f ig . getAllMessages + " / : i d " , async (

↪→ req , res) => {

2 i f (req . params . i d !== undef ined | | req . params . i d !== n u l l)

↪→ {

3 th is . messageControl ler .

↪→ getAllMessagesAddressedToUserAnd

4 BroadcastedMessages (req . params . i d)

5 . then ((messages) => {

6 res . json (messages) ;

7 }) ;

8 } else {

9 res . json ({ s ta tus : 1 , message : " Get messages f a i l e d

↪→ " }) ;

10 }

11 }) ;

92

Listing 7.22. Getter for all public messages and private addressed ones.

1 public getAllMessagesAddressedToUserAndBroadcastedMessages (user Id)

↪→ : any {

2 return models . Message . f i n d ({ $or : [{ $or : [{ sender : user Id } ,

↪→ { communicat ionPartner : user Id }] } ,

3 { r ece i ve r : 0 }] }) . then ((messages) => {

4 return messages ;

5 }) ;

6 }

Listing 7.23. Saving routine for incoming messages.

1 public saveMessageToDB (messageData) : any {

2 l e t add i t i ona lDa ta = { } ;

3 l e t communicat ionPartner = { } ;

4 for (l e t key i n messageData) {

5 i f (key !== " headerMessageCode " && key !== " header

↪→ " &&

6 key !== " communicationPartnerUser " && key

↪→ !== " communicat ionPartnerBroadcast "

↪→ &&

7 key !== " messageBody " && key !== "

↪→ messageBodyRaw") {

8 add i t i ona lDa ta [key] = messageData [key] ;

9 }

10 i f (key === " communicationPartnerUser ") {

11 add i t i ona lDa ta [" communicat ionPartner "] =

↪→ messageData [key] . i d ;

12 }

13 i f (key === " communicat ionPartnerBroadcast ") {

14 add i t i ona lDa ta [" communicat ionPartner "] =

↪→ messageData [key] . i d ;

15 }

16 }

17 const message = new models . Message ({

18 headerMessageCode : messageData . header .

↪→ headerMessageCode ,

19 sender : messageData . header . sender . id ,

20 rece i ve r : messageData . header . r ece i ve r . id ,

21 message : messageData . messageBody . messageBody ,

93

22 messageRaw : messageData . messageBody . messageBodyRaw

↪→ ,

23 add i t i ona lDa ta

24 }) ;

25 return message . save () . then ((savedMessage) => {

26 return [savedMessage] ;

27 }) ;

28 }

Listing 7.24. Handling the login of beacons.

1 public async loginBeacon (beaconData) : Promise<any> {

2 l e t add i t i ona lDa ta = { } ;

3 for (l e t key i n beaconData) {

4 i f (key !== "name") {

5 add i t i ona lDa ta [key] = beaconData [key] ;

6 }

7 }

8 return models . Peer . countDocuments ({ name : beaconData . name })

↪→ . then (async (count) => {

9 i f (count === 0) {

10 l e t beacon = new models . Peer ({

11 name : beaconData . name,

12 type : 1 ,

13 add i t i ona lDa ta

14 }) ;

15 return awai t beacon . save () . then ((

↪→ savedBeacon) => {

16 return [savedBeacon] ;

17 }) ;

18 } else {

19 return awai t models . Peer . f i n d ({ $and : [{

↪→ name : beaconData . name} , { type :

↪→ 1 }] }) . then ((beacon) => {

20 return beacon ;

21 }) ;

22 }

23 }) ;

24 }

Listing 7.25. Event for checking location and state of beacons.

94

1 s e t I n t e r v a l (() => {

2 th is . l o c a t i o n C o n t r o l l e r . getSocketConnect ions () . then ((

↪→ socketConnect ions) => {

3 for (l e t socketConnect ion i n socketConnect ions) {

4 i f (th is . socket . sockets . sockets [

↪→ socketConnect ions [socketConnect ion

↪→] . socket Id] !== undef ined) {

5 th is . socket . to (socketConnect ions [

↪→ socketConnect ion] . socket Id)

↪→ . emit (" requestLocat ionCheck

↪→ " ,

6 { socket Id : socketConnect ions [

↪→ socketConnect ion] . socket Id

↪→ }) ;

7 } else {

8 th is . l o c a t i o n C o n t r o l l e r .

↪→ deleteSocketConnect ion ({

9 socket Id : socketConnect ions [

↪→ socketConnect ion] . socket Id

↪→ }) ;

10 }

11 }

12 }) ;

13 } , 1000 * 60 * 5) ;

Listing 7.26. Creating a new WebSocket instance.

1 th is . socket = new IO (server) ;

Listing 7.27. Global socket listener for connection.

1 th is . socket . on (" connect ion " , (socket) => {

2

3 }) ;

Listing 7.28. Initialization of beacon application.

1 socket = Socke tCon t ro l l e r . ge t Ins tance () ;

2 socket . addLoginL is tener (th is) ;

3 socket . addMessageListener (th is) ;

4 socket . loginBeacon (createBeaconName ()) ;

5

95

6 un i taPermiss ionsResu l tRece iver = new

↪→ Uni taPermiss ionsResul tReceiver (new Handler ()) ;

7 un i taPermiss ionsResu l tRece iver . setReceiver (th is) ;

8

9 rece i ve r = Rece iveCont ro l le r . ge t Ins tance () ;

10 rece i ve r . i n i t (un i taPermiss ionsResu l tRece iver) ;

11

12 l o c a t i o n C o n t r o l l e r = L o c a t i o n C o n t r o l l e r . ge t Ins tance () ;

13 l o c a t i o n C o n t r o l l e r . se tCurrentContex t (th is) ;

14 l o c a t i o n C o n t r o l l e r . i n i t L o c a t i o n T r a c k e r () ;

15

16 sender = new SendCont ro l le r (un i taPermiss ionsResu l tRece iver) ;

17

18 localMessageDatabase = LocalMessageDatabase . get Ins tance () ;

19 localMessageDatabase . addMessageListener (th is) ;

20 localMessageDatabase . setCurrentContex t (th is) ;

Listing 7.29. Response listener of login from the server.

1 @Override

2 public void onLoginResponse (JSONObject loginResponse) {

3 i n t i d = −1;

4 S t r i n g name = n u l l ;

5 t ry {

6 i d = loginResponse . g e t I n t (" i d ") ;

7 } catch (JSONException e) {

8 e . p r in tS tackTrace () ;

9 }

10 t ry {

11 name = loginResponse . ge t S t r i n g ("name") ;

12 } catch (JSONException e) {

13 e . p r in tS tackTrace () ;

14 }

15 i f (i d > (−1) && name != n u l l) {

16 Beacon loggedInBeacon = new Beacon (id , name) ;

17 L o g i n U t i l s . saveLoggedInBeacon (ge tApp l i ca t i onCon tex t () ,

↪→ loggedInBeacon) ;

18 runOnUiThread (new Runnable () {

19 @Override

20 public void run () {

21 s t a r t S o c i a l W a l l () ;

96

22 }

23 }) ;

24 } else {

25 }

26 }

Listing 7.30. Listener example for a message type.

1 @Override

2 public void onCommandMessageReceived (CommandMessage

↪→ receivedMessage) {

3 i f (checkIfMessageIsNotFromMyself (receivedMessage . getHeader

↪→ () . getSender () , L o g i n U t i l s . getLoggedInBeacon (

↪→ ge tApp l i ca t i onCon tex t ())) &&

4 checkIfMessageIsForMysel f (receivedMessage .

↪→ getHeader () . getReceiver () , L o g i n U t i l s .

↪→ getLoggedInBeacon (ge tApp l i ca t i onCon tex t ()))

↪→) {

5 Routines . onCommandMessageReceivedRoutine (

↪→ receivedMessage , th is) ;

6 } else {

7 }

8 }

Listing 7.31. Listener example for url response from server.

1 @Override

2 public void onGetUrlForCommandGetAllMessagesResult (JSONObject

↪→ urlResponse , JSONObject senderResponse) {

3 S t r i n g u r l = n u l l ;

4 t ry {

5 u r l = urlResponse . ge t S t r i n g (" u r l ") ;

6 } catch (JSONException e) {

7 e . p r in tS tackTrace () ;

8 }

9 UrlMessage urlMessage = new UrlMessage (L o g i n U t i l s .

↪→ getLoggedInBeacon (ge tApp l i ca t i onCon tex t ()) ,

↪→ MessageUti ls . convertJSONToPeer (senderResponse) , u r l

↪→ . getBytes (StandardCharsets . UTF_8)) ;

10 Routines . sendMessage (urlMessage , sender , un i t aSe t t i ngs ,

↪→ ge tApp l i ca t i onCon tex t ()) ;

11 }

97

Listing 7.32. Routine example of further TextMessage processing.

1 public s t a t i c void onTextMessageReceivedRoutine (a t . f l o r i a n t a u r e r .

↪→ unitabeaconmodule . TextMessage receivedTextMessage ,

↪→ Socke tCon t ro l l e r socket , A c t i v i t y a c t i v i t y) {

2 StatusMessage statusMessage = new StatusMessage (L o g i n U t i l s

↪→ . getLoggedInBeacon (a c t i v i t y) , receivedTextMessage .

↪→ getHeader () . getSender () , StatusCodes .

↪→ MESSAGE_PACKET_RECEIVED_SUCCESS. t o S t r i n g () . getBytes

↪→ (StandardCharsets . UTF_8)) ;

3 sendMessage (statusMessage , M a i n A c t i v i t y . sender ,

↪→ M a i n A c t i v i t y . un i t aSe t t i ngs , a c t i v i t y) ;

4 TextMessage textMessage = MessageUti ls .

↪→ convertUnitaTextMessageToSocialWallTextMessage (

↪→ receivedTextMessage . getHeader () . getSender () ,

↪→ receivedTextMessage . getHeader () . getReceiver () ,

↪→ receivedTextMessage) ;

5 i f (textMessage . i s P u b l i c ()) {

6 Gson gson = new Gson () ;

7 S t r i n g j s o n S t r i n g = gson . toJson (textMessage) ;

8 JSONObject messageJSON = n u l l ;

9 t ry {

10 messageJSON = new JSONObject (j s o n S t r i n g) ;

11 } catch (JSONException e) {

12 e . p r in tS tackTrace () ;

13 }

14 socket . saveMessage (messageJSON) ;

15 } else {

16 LocalMessageDatabase localMessageDatabase =

↪→ LocalMessageDatabase . get Ins tance () ;

17 localMessageDatabase . saveMessage (textMessage) ;

18 }

19 }

Listing 7.33. User login process with REST call.

1 private void l og inUser (S t r i n g userName) {

2 i n t NUMBER_OF_CORES = Runtime . getRuntime () .

↪→ ava i lab leProcessors () ;

98

3 f i n a l ScheduledExecutorService threadPool = Executors .

↪→ newScheduledThreadPool (NUMBER_OF_CORES + 1) ;

4

5 threadPool . execute (new Runnable () {

6 @Override

7 public void run () {

8 f i n a l Socia lWal lAPI res tSe rv i ce = RESTControl ler .

↪→ g e t R e t r o f i t I n s t a n c e () . c reate (Socia lWal lAPI .

↪→ class) ;

9

10 res tSe rv i ce . log inUser (userName) . enqueue (new

↪→ Callback <ResponseBody > () {

11 @Override

12 public void onResponse (Cal l <ResponseBody> c a l l

↪→ , Response<ResponseBody> response) {

13 i f (response . i sSuccess fu l ()) {

14 / / Log . i (" L o g i n A c t i v i t y " , " post

↪→ submit ted to API . " +

↪→ getSt r ingFromRetrof i tResponse (

↪→ response)) ;

15 S t r i n g d e t a i l s S t r i n g =

↪→ getSt r ingFromRetrof i tResponse (

↪→ response) ;

16 Log . i (" L o g i n A c t i v i t y " , " post submit ted

↪→ to API . " + d e t a i l s S t r i n g) ;

17 JSONObject jOb jec t = n u l l ;

18 t ry {

19 jOb jec t = new JSONObject (

↪→ d e t a i l s S t r i n g) ;

20 } catch (JSONException e) {

21 e . p r in tS tackTrace () ;

22 }

23 Log . i (" L o g i n A c t i v i t y " , " post submit ted

↪→ to API . " + jOb jec t . t o S t r i n g ())

↪→ ;

24 JSONObject jsonObjec t = n u l l ;

25 t ry {

26 jsonObjec t = (JSONObject) jOb jec t

↪→ . getJSONArray (" user ") .

↪→ getJSONObject (0) ;

99

27

28 } catch (JSONException e) {

29 e . p r in tS tackTrace () ;

30 }

31 Log . i (" L o g i n A c t i v i t y " , " post submit ted

↪→ to API . " + jsonObjec t . t o S t r i n g

↪→ ()) ;

32

33 onLoginResponse (jsonObjec t) ;

34 }

35 }

36

37 @Override

38 public void onFa i lu re (Cal l <ResponseBody> c a l l ,

↪→ Throwable t) {

39 Log . e (" L o g i n A c t i v i t y " , " Unable to submit

↪→ post to API . " + t) ;

40 }

41 }) ;

42 }

43 }) ;

44 }

Listing 7.34. Processing for a received TextMessage.

1 Peer beacon = (Beacon) spnMsgReceiver . getSelectedI tem () ;

2 TextMessage textMessage = n u l l ;

3 i f (r b t P u b l i c . isChecked ()) {

4 Peer communicat ionPartner = new Broadcast () ;

5 textMessage = new TextMessage (L o g i n U t i l s . getLoggedInUser (

↪→ g e t A c t i v i t y ()) , beacon , communicationPartner ,

↪→ edtMsgMessage . getText () . t o S t r i n g () , true) ;

6 } else i f (r b t P r i v a t e . isChecked ()) {

7 Peer communicat ionPartner = (User) spnContacts .

↪→ getSelectedI tem () ;

8 textMessage = new TextMessage (L o g i n U t i l s . getLoggedInUser (

↪→ g e t A c t i v i t y ()) , beacon , communicationPartner ,

↪→ edtMsgMessage . getText () . t o S t r i n g () , fa lse) ;

9 }

10 a t . f l o r i a n t a u r e r . unitabeaconmodule . TextMessage unitaTextMessage =

↪→ new at . f l o r i a n t a u r e r . unitabeaconmodule . TextMessage (

100

↪→ textMessage . getHeader () . getSender () , textMessage . getHeader

↪→ () . getReceiver () , textMessage . getCommunicationPartner () ,

↪→ MessageUti ls .

↪→ convertSocia lWal lTextMessageAddi t ionalParametersToByteArray

↪→ (textMessage . i s P u b l i c () , textMessage . getMessageBody () .

↪→ getMessageBodyRaw ())) ;

11 Routines . sendMessage (unitaTextMessage , M a i n A c t i v i t y . sender ,

↪→ M a i n A c t i v i t y . un i t aSe t t i ngs , g e t A c t i v i t y ()) ;

Listing 7.35. REST API endpoints interface for client app.

1 public i n t e r f a c e Socia lWal lAPI {

2 @GET

3 Cal l <ResponseBody> sendUrlToServer (@Url S t r i n g u r l) ;

4

5 @GET(" / log inUser ")

6 Cal l <ResponseBody> log inUser (@Query(" userName ") S t r i n g

↪→ userName) ;

7 }

101

C Questionnaires

The following pages include the english and german questionnaire based interview for the

user study with the tasks to fulfill:

102

Test Guide
My name is Florian and will guide you through the test. Before we start, I will give you a short
introduction about ultrasound, ultrasonic beacons and the test procedure.

For my master thesis, I test my ultrasonic beacon called “Unita beacon” which uses the application
“SocialWall”, I developed as a use case for my beacon. The beacon uses ultrasound for
communication. This means the messages, which are sent, are located in the frequency band
between 18kHz and 22kHz, which for most people is not audible anymore. Those messages are not
emitted through walls, instead it is limited to a room. The application “SocialWall” is a kind of black
board, where messages can be left and retrieved.

I will start with some general questions and then there are 6 tasks to work through. Afterwards,
there will be a short evaluation of the usability of the system and then an interview about your
personal assessment of the beacon and the application.

Since the test will be audio recorded and not used outside of my master thesis, I ask you to sign the
consent form please. All data will be saved and handled anonymously.

If you have any questions while testing, please ask right away and express your thoughts on the
individual steps through the tasks aloud.

Do you have questions now?

General data
Age: ______________

Sex:  Female  Male  Other  No answer

How many minutes per day do you spend using your smartphone?
 Never / I don’t have one
 Not daily  Less than 10 minutes  10 to 15 minutes  15 to 30 minutes
 30 to 45 minutes  45 to 60 minutes  more than 61 minutes

What is your profession?

Which qualification do you have?

For which tasks do you mostly use your smartphone?

Which of these tasks have you performed before?

Mobile Payment with NFC

Tickets (concerts, theater,,..) with NFC

Pairing with Bluetooth speaker

Pairing with loudspeaker with NFC

Entrance with NFC

Connecting with media-stick/media-box with Wi-Fi

Connecting with Chromecast with Bluetooth

Combining loudspeakers with Wi-Fi

Others:

Have you already used location-based services?

Have you heard about ultrasonic communication before? If yes, in which context? What do you know
about it?

Did you know that most smartphones can send and receive ultrasonic signals?

Have you actively used ultrasound before? If yes, how?

Do you like the idea of sending data over inaudible sound? Why?

 1 2 3 4 5
Do not like the idea      Like the idea

Would you use ultrasound for interaction with other devices? Why?

 1 2 3 4 5
Would not use      Would use

Would you accept ultrasonic communication?

1. Useful |__|__|__|__|__| Useless
2. Pleasant |__|__|__|__|__| Unpleasant
3. Bad |__|__|__|__|__| Good
4. Nice |__|__|__|__|__| Annoying
5. Effective |__|__|__|__|__| Superfluous
6. Irritating |__|__|__|__|__| Likeable
7. Assisting |__|__|__|__|__| Worthless
8. Undesirable |__|__|__|__|__| Desirable
9. Raising Alertness |__|__|__|__|__| Sleep-inducing

Would you use ultrasound for following tasks?

Mobile Payment with NFC

Tickets (concerts, theater,,..) with NFC

Pairing with Bluetooth speaker

Pairing with loudspeaker with NFC

Entrance with NFC

Connecting with media-stick/media-box with Wi-Fi

Connecting with Chromecast with Bluetooth

Combining loudspeakers with Wi-Fi

Others:

Task 1 – Pairing

You are passing by the entrance of the university main building and spot the Unita beacon.
You want to try it out with the client of the beacon, “SocialWall”. Therefore, you need to pair
your smartphone with the beacon. The application is already downloaded, and you are
logged in. Pair your smartphone now with the Unita beacon.

Task 2 – Write a public message

You want to leave a message for all people which are entering the university main building.
Write a public message with the text “The FH offers many training opportunities!”.

Task 3 – Check for public messages

After a work day you want to have a look what other people wrote on the black board.
Retrieve all public messages.

Task 4 – Add a contact to your list

After a talk with one of your colleagues, you found out she is also using the application
“SocialWall”. You want to leave private messages for her. Therefore, you asked for his
“SocialWall”-ID which is 10. Add her as a contact now with the name “Sonic”.

Task 5 – Write a private message

You want to leave your new contact a private message. Write a private message for the user
“Sonic” with the message text “Hey, what’s up?”.

Task 6 – Get the latest private message

After some time, you want to have a look, if the user “Sonic” left a new message for you.
Retrieve the latest private message.

System Usability Scale
Instructions: For each of the following statements, mark one box that best describes your reactions
to the ultrasonic beacon and the application “SocialWall”.

I think that I would like to use this system frequently.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I found the system unnecessarily complex.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I thought the system was easy to use.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I think that I would need the support of a technical person to be able to use this system.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I found the various functions in this system were well integrated.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I thought there was too much inconsistency in this system.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I would imagine that most people would learn to use this system very quickly.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I found the system very cumbersome to use.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I felt very confident using the system.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

I needed to learn a lot of things before I could get going with this system.
 1 2 3 4 5

Strongly Disagree      Strongly Agree

Questionnaire-based interview
Did you hear something unusual while interacting with the beacon? (e.g. crack, noise, high-pitched
sound)

How intuitive is the application “SocialWall”?

 1 2 3 4 5
Unintuitive      Intuitive

Was the application easy to use?

 1 2 3 4 5
Inaccessible      Easy to use

Did you find the pairing process via sound convenient?

 1 2 3 4 5
Inconvenient      Convenient

Did you have problems somewhere?

Would you need additional feedback while sending and receiving messages? If yes, in which form?

Do you like the idea of such an ultrasound black board to leave messages?

 1 2 3 4 5
Dislike      Like

What do you think about the aspect, that “SocialWall” can only be used on location?

Would you use it if such beacons were available in public places? If yes, why?

Do you see possible improvements to add?

Testablauf
Mein Name ist Florian und ich werde Sie durch den Test begleiten. Vor dem Start werde ich Ihnen
eine Kurze Einleitung zu Ultraschall, Ultraschallbeacons und dem Testablauf geben.

Für meine Diplomarbeit teste ich mein Ultraschallbeacon genannt „Unita beacon“, dass die
Anwendung „SocialWall“ verwendet, die ich als Anwendungsfall für mein Beacon programmiert
habe. Das Beacon nutzt Ultraschall um zu kommunizieren. Dies bedeutet, dass die Nachrichten in
einem Frequenzband zwischen 18kHz und 22kHz gesendet werden. Die meisten Menschen können
diese hohen Frequenzen nicht mehr hören. Die ausgesendeten Nachrichten können nicht durch
Wände gesendet werden und sind somit auf einen Raum begrenzt. Die Anwendunge “SocialWall” ist.

Ich werde mit allgemeinen Fragen starten, bevor wir zu 6 Aufgaben kommen. Danach wird eine kurze
Auswertung der Usability sein und anschließend, werde ich Fragen zur Interaktion mit dem Beacon
selbst wie mit der Applikation stellen.

Da der Test aufgenommen wird und nicht außerhalb meiner Diplomarbeit verwendet wird, bitte ich
Sie die Einverständniserklärung zu unterschreiben. Alle Daten werden anonymisiert gespeichert und
gehandhabt.

Falls Sie während des Tests Fragen haben, einfach gleich fragen. Bitte sprechen Sie alle Überlegungen
während der Aufgaben laut aus.

Haben Sie Fragen?

Allgemeine Angaben
Alter: ______________

Geschlecht:  weiblich  männlich  anderes  keine Antwort

Wie viele Minuten pro Tag verwenden sie Ihr Smartphone?
 nie/Ich besitze keines
 nicht täglich  weniger als 10 Minuten  10 bis 15 Minuten  15 bis 30 Minuten
 30 bis 45 Minuten  45 bis 60 Minuten  mehr als 61 Minuten

Was ist ihr Beruf?

Welche Ausbildung besitzen Sie?

Für welche Aufgaben verwenden Sie ihr Smartphone am meisten?

Welche dieser Aufgaben haben Sie schon durchgeführt?

Mobiles Zahlen mit NFC

Tickets (Konzerte, Theater,..) mit NFC

Verbinden mit Bluetooth Lautsprechern

Verbinden mit Lautsprechern über NFC

Zutritt zu Gebäuden mit NFC

Verbinden von Medienboxen mit Wi-Fi

Verbinden vom Chromecast mit Bluetooth

Verbinden von Lautsprechern untereinander mit Wi-Fi

Andere:

Haben Sie schon standortbasierte Services genutzt?

Haben Sie schon mal von Ultraschallkommunikation gehört? Wenn ja, in welchem Zusammenhang?
Was wissen Sie darüber?

Haben Sie gewusst, dass die meisten Smartphones Ultraschallsignale senden und empfangen
können?

Haben Sie schon mal Ultraschall aktiv genutzt? Wenn ja, wie?

Finden Sie die Idee gut, Daten über nichthörbaren Schall zu übertragen? Warum?

 1 2 3 4 5
Gefällt die Idee nicht      Gefällt die Idee

Würden Sie Ultraschall zum Interagieren mit anderen Geräten nutzen? Warum?

 1 2 3 4 5
Würde es nicht

nutzen      Würde es nutzen

Würden Sie Ultraschallkommunikation akzeptieren?

1 Nützlich |__|__|__|__|__| Nutzlos
2 Angenehm |__|__|__|__|__| Unangenehm
3 Schlecht |__|__|__|__|__| Gut
4 Nett |__|__|__|__|__| Nervig
5 Effizient |__|__|__|__|__| Unnötig
6 Ärgerlich |__|__|__|__|__| Erfreulich
7 Hilfreich |__|__|__|__|__| Wertlos
8 Nicht wünschenswert |__|__|__|__|__| Wünschenswert
9 Aktivierend |__|__|__|__|__| Einschläfernd

Würden Sie Ultraschall für folgende Aufgaben verwenden?

Mobiles Zahlen mit NFC

Tickets (Konzerte, Theater,..) mit NFC

Verbinden mit Bluetooth Lautsprechern

Verbinden mit Lautsprechern über NFC

Zutritt zu Gebäuden mit NFC

Verbinden von Medienboxen mit Wi-Fi

Verbinden vom Chromecast mit Bluetooth

Verbinden von Lautsprechern untereinander mit Wi-Fi

Andere:

Aufgabe 1 – Verbinden

Sie passieren den Eingang des Fachhochschulgebäudes und sehen das Unita Beacon. Sie
möchten es mit der App des Beacons, “SocialWall”, ausprobieren. Dafür müssen Sie ihr
Smartphone mit dem Beacon verbinden. Die App ist schon heruntergeladen und Sie sind
schon angemeldet. Verbinden Sie ihr Smartphone nun mit dem Unita Beacon.

Aufgabe 2 – Öffentliche Nachricht schreiben

Sie wollen eine Nachricht für alle Leute, die das Fachhochschulgebäude betreten,
hinterlassen. Schreiben Sie eine öffentliche Nachricht mit dem Text „Die FH bietet viele
Fortbildungsmöglichkeiten an!“.

Aufgabe 3 – Nach öffentlichen Nachrichten prüfen

Nach einem Arbeitstag wollen Sie nachsehen, ob andere Personen Nachrichten ans schwarze
Brett geschrieben haben. Rufen Sie alle öffentlichen Nachrichten ab.

Aufgabe 4 –Kontakt zur Liste hinzufügen

Nach einem kurzen Gespräch mit einer Kollegin, haben Sie herausgefunden, dass sie auch die
App „SocialWall“ verwendet. Sie wollen eine private Nachricht für sie hinterlassen. Dafür
haben Sie sie nach ihrer „SocialWall“-ID gefragt. Diese ist 10. Fügen Sie sie als Kontakt mit
dem Namen „Sonic“ hinzu.

Aufgabe 5 – Private Nachricht senden

Sie wollen für ihren neuen Kontakt eine private Nachricht hinterlassen. Schreiben Sie eine
private Nachricht für die Userin „Sonic“ mit dem Text „Hallo, wie geht’s?“.

Aufgabe 6 – Letzte private Nachricht bekommen

Nach einiger Zeit wollen Sie nachsehen, ob die Userin „Sonic“ eine neue Nachricht für Sie
hinterlassen hat. Rufen Sie die letzte private Nachricht ab.

System Usability Scale
Markieren Sie für jede der folgenden Aussagen das Kästchen, was Ihre heutigen Reaktionen auf das
Ultraschallbeacon und die Applikation „SocialWall“ am besten beschreib.

Ich kann mir sehr gut vorstellen, das System regelmäßig zu nutzen.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich empfinde das System als unnötig komplex.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich empfinde das System als einfach zu nutzen.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich denke, dass ich technische Unterstützung benötigen würde, um das System zu nutzen.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich finde, dass die verschiedenen Funktionen des Systems gut integriert sind.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich finde, dass es im System zu viele Inkonsistenzen gibt.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich kann mir vorstellen, dass die meisten Leute das System schnell zu beherrschen lernen.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich empfinde die Bedienung als sehr umständlich.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich habe mich bei der Nutzung des Systems sehr sicher gefühlt.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Ich musste eine Menge Dinge lernen, bevor ich mit dem System arbeiten konnte.
 1 2 3 4 5

Stimme nicht zu      Stimme zu

Fragebogengestütztes Interview
Haben Sie etwas Ungewöhnliches gehört, während Sie mit dem Beacon interagiert haben? (z.B.
Knacken, Rauschen, hohe Klänge)

Wie intuitiv ist die App „SocialWall“?

 1 2 3 4 5
Nicht intuitiv      Intuitiv

War die App einfach zu bedienen?

 1 2 3 4 5
Unzugänglich      Einfach zu bedienen

Fanden Sie den Verbindungsprozess über Schall bequem?

 1 2 3 4 5
Unbequem      Bequem

Traten irgendwo Probleme auf?

Bräuchten Sie noch zusätzliches Feedback während des Sendens und Empfanges von Nachrichten?
Wenn ja, in welcher Form?

Gefällt Ihnen die Idee eines solchen ultraschallbasierten Schwarzen Brettes um Nachrichten zu
hinterlassen?

 1 2 3 4 5
Gefällt nicht      Gefällt

Wie finden Sie den Aspekt, dass “SocialWall” nur direkt vor Ort genutzt werden kann?

Würden Sie solch ein Beacon nutzen, wenn es an einem öffentlichen Ort aufgebaut wäre? Wenn ja,
warum?

Hätten Sie noch mögliche Verbesserungen?

	Introduction
	Background, Theory and Related Works
	Ultrasound
	Modulation
	Amplitude Shift Keying (ASK)
	Frequency Shift Keying (FSK)
	Phase Shift Keying (PSK)
	Enhanced and combined modulation techniques

	Acoustic Networks
	Frameworks and Protocols for Ultrasonic Communication
	Open Protocols: The SoniTalk SDK
	Proprietary Frameworks and Protocols

	Ultrasonic Applications
	Context-Awareness
	Indoor Localization
	Ultrasonic Communication
	Internet of Things and Wearables

	Security Aspects of Ultrasonic Communication

	Related Communication Technologies
	BLE - Bluetooth Low Energy
	Wi-Fi
	NFC - Near Field Communication
	LoRaWAN
	5G

	Alternative Communication Protocols to the Thesis
	MQTT
	CoAP
	AMQP

	OSI-Model

	UNITA - An Ultrasonic Beacon
	General Requirements of UNITA
	Environment and Architecture of UNITA
	Hardware Implementation
	Requirements
	Challenges
	Hardware Selection
	Problems
	Results of Hardware Selection
	Hardware Setup of the UNITA Beacon

	Software Implementation
	Operating System
	UNITA SDK - Client-side
	Requirements
	Software Architecture
	SoniTalk Extension for Longer Messages

	Used Protocols
	WebSockets
	REST
	Functionality
	Classification in the OSI-Model
	Challenges and Remarks

	UNITA Server - Server-side
	Requirements
	Structure
	Database
	Functionality
	Map
	Challenges and Remarks

	Proof-Of-Concept App "SocialWall"
	Use Case Definition
	Main Use Case - SocialWall
	Implementation
	Implementation Beacon
	Implementation Client

	Evaluation
	User Study
	Aims of the User Study
	Target Group
	Study Design
	Research Questions
	Task Description

	User Study Results
	Demographics
	Ultrasonic Communication
	Usability of SocialWall

	Discussion and Future Work
	UNITA Beacon and Ultrasound Communication
	UNITA SDK and Server
	User Study Interpretation: SocialWall
	User Study Interpretation: Ultrasonic Communication
	Future Topics and possible Extensions

	Conclusion
	Appendices
	Class Diagrams - UNITA SDK
	Source Code Snippets
	Questionnaires

